Setting

- \mathbb{F} denotes \mathbb{R} or \mathbb{C}
- V is a finite-dimensional, nonzero vector space over \mathbb{F}
Outline

1. Generalized Eigenvectors
2. The Characteristic Polynomial
3. Decomposition of an Operator
4. Square Roots
5. The Minimal Polynomial
6. Jordan Form
Generalized Eigenvectors

Definition

- Suppose $T \in \mathcal{L}(V)$, and λ is an eigenvalue of T.
- Then $v \in V$ is a **generalized eigenvector** of T corresponding to λ if

$$\quad (T - \lambda I)^j v = 0,$$

for some positive integer j.

Example

- Let $T \in \mathcal{L}(\mathbb{C}^3)$ be defined by $T(z_1, z_2, z_3) = (z_2, 0, z_3)$.
- 0 is an eigenvalue, and the set of generalized eigenvectors corresponding to 0 is

$$\{(z_1, z_2, 0) \mid z_1, z_2 \in \mathbb{C}\}.$$
Example

- Let \(T \in \mathcal{L}(\mathbb{C}^3) \) be defined by \(T(z_1, z_2, z_3) = (z_2, 0, z_3) \).
- 0 is an eigenvalue, and the set of generalized eigenvectors corresponding to 0 is
 \[
 \{(z_1, z_2, 0) \mid z_1, z_2 \in \mathbb{C}\}.
 \]
- 1 is an eigenvalue, and the set of generalized eigenvectors corresponding to 1 is
 \[
 \{(0, 0, z_3) \mid z_3 \in \mathbb{C}\}.
 \]
- \(\mathbb{C}^3 = \{(z_1, z_2, 0) \mid z_1, z_2 \in \mathbb{C}\} \oplus \{(0, 0, z_3) \mid z_3 \in \mathbb{C}\} \)
Proposition

If \(T \in \mathcal{L}(V) \), and \(k \) is a nonnegative integer, then

\[
\text{null } T^k \subseteq \text{null } T^{k+1}.
\]

Proposition (8.5)

- Let \(T \in \mathcal{L}(V) \), and
- suppose \(m \) is a nonnegative integer, such that
- \(\text{null } T^m = \text{null } T^{m+1} \).
- Then,

\[
\text{null } T^0 \subseteq \text{null } T^1 \subseteq \cdots \subseteq \text{null } T^m = \text{null } T^{m+1} = \cdots.
\]
Proposition (8.6)
If \(T \in \mathcal{L}(V) \), then

\[\text{null } T^{\dim V} = \text{null } T^{\dim V+1} = \ldots. \]

Corollary (8.7)
- Suppose \(T \in \mathcal{L}(V) \), and \(\lambda \) is an eigenvalue of \(T \).
- Then the set of generalized eigenvalues of \(T \) corresponding to \(\lambda \) is

\[\text{null}(T - \lambda I)^{\dim V}. \]
Nilpotent Operators

Definition
An operator is called \textit{nilpotent} if some power of it equals 0.

Example
- The map $N \in \mathcal{L}(\mathbb{F}^4)$ defined by $N(z_1, z_2, z_3, z_4) = (z_3, z_4, 0, 0)$ is nilpotent.
- The differentiation operator $D \in \mathcal{L}(\mathcal{P}_m(\mathbb{R}))$ is nilpotent.

Corollary (8.8)
If $N \in \mathcal{L}(V)$ is nilpotent, then $N^{\dim V} = 0$.
Proposition
If $T \in \mathcal{L}(V)$, and k is a nonnegative integer, then
\[\operatorname{range} T^k \supseteq \operatorname{range} T^{k+1}. \]

Proposition (8.9)
If $T \in \mathcal{L}(V)$, then
\[\operatorname{range} T^{\dim V} = \operatorname{range} T^{\dim V+1} = \ldots. \]
Multiplicity of Eigenvalues

Theorem (8.10)

- Let $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$.
- Then, for every basis of V wrt. which T has an upper-triangular matrix,
- λ appears on the diagonal of the matrix of T precisely $\dim \text{null}(T - \lambda I)^{\dim V}$ times.

Definition

- Suppose λ is an eigenvalue of $T \in \mathcal{L}(V)$.
- The *multiplicity* of λ is
- the dimension of the generalized eigenspace corresponding to λ,

$$\dim \text{null}(T - \lambda I)^{\dim V}.$$
Example

- Let $T \in \mathcal{L}(\mathbb{F}^3)$ be defined by $T(z_1, z_2, z_3) = (0, z_1, 5z_3)$.
- 0 is an eval. of T with multiplicity 2, and
- 5 is an eval. of T with multiplicity 1.

Example

- Suppose $T \in \mathcal{L}(\mathbb{F}^3)$ is the operator whose matrix wrt. the standard basis is
 \[
 \begin{pmatrix}
 6 & 7 & 7 \\
 0 & 6 & 7 \\
 0 & 0 & 7 \\
 \end{pmatrix}.
 \]
- Then 6 is an eval. of T with multiplicity 2, and
- 7 is an eval. of T with multiplicity 1.
Proposition (8.18)

1. If V is a complex vector space, and $T \in \mathcal{L}(V)$,
2. then the sum of the multiplicities of all eigenvalues of T equals $\dim V$.
The Characteristic Polynomial of an Operator

Definition

Suppose V is a complex vector space, and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eval.'s of T, and let d_j denote the multiplicity of λ_j, for each j. The polynomial

$$(z - \lambda_1)^{d_1} \cdots (z - \lambda_m)^{d_m}$$

is called the characteristic polynomial of T.

The degree of the characteristic polynomial is $\dim V$.
The roots of the characteristic polynomial are the eval.'s of the operator.
Example

- Let $T \in \mathcal{L}(\mathbb{F}^3)$ be defined by $T(z_1, z_2, z_3) = (0, z_1, 5z_3)$.
- 0 is an eval. of T with multiplicity 2, and
- 5 is an eval. of T with multiplicity 1.
- Characteristic poly: $z^2(z - 5)$

Example

- Suppose $T \in \mathcal{L}(\mathbb{F}^3)$ is the operator whose matrix wrt. the standard basis is
 \[
 \begin{pmatrix}
 6 & 7 & 7 \\
 0 & 6 & 7 \\
 0 & 0 & 7
 \end{pmatrix}.
 \]
- Then 6 is an eval. of T with multiplicity 2, and
- 7 is an eval. of T with multiplicity 1.
- Characteristic poly: $(z - 6)^2(z - 7)$
Theorem (8.20)

- Suppose that V is a complex vector space, and $T \in \mathcal{L}(V)$.
- If q is the characteristic poly of T, then $q(T) = 0$.
1. Generalized Eigenvectors
2. The Characteristic Polynomial
3. Decomposition of an Operator
4. Square Roots
5. The Minimal Polynomial
6. Jordan Form
Goal: For any \(T \in \mathcal{L}(V) \), show that \(V \) can be decomposed into the generalized eigenspaces of \(T \).
Invariance of $\text{null} \rho(T)$

Proposition (8.22)

- If $T \in \mathcal{L}(V)$, and
- $\rho \in \mathcal{P}(\mathbb{F})$,
- then $\text{null} \rho(T)$ is invariant under T.
Decomposition of V into Generalized Eigenspaces

Theorem (8.23)

- Suppose V is a complex vector space, and $T \in \mathcal{L}(V)$.
- Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T, and let U_1, \ldots, U_m be the generalized eigenspaces.
- Then
 1. $V = U_1 \oplus \cdots \oplus U_m$;
 2. each U_j is invariant under T;
 3. each $(T - \lambda_j I)|_{U_j}$ is nilpotent.

Corollary (8.25)

- Suppose V is a complex vector space, and $T \in \mathcal{L}(V)$.
- Then there is a basis of V consisting of generalized eigenvectors of T.

(Tarleton State University) Math 550 Chapter 8 Fall 2010 20 / 36
Lemma (8.26)

- Suppose N is a nilpotent operator on V.
- Then there is a basis of V wrt. which the matrix of N has the form
 \[
 \begin{pmatrix}
 0 & * \\
 \vdots & \ddots \\
 0 & 0 & 0
 \end{pmatrix}.
 \]
- All entries on and below the diagonal are zero.
Theorem (8.28)

Suppose V is a complex vector space, and $T \in \mathcal{L}(V)$.

Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T.

Then there is a basis of V wrt. which T has a block diagonal matrix of the form

$$
\begin{pmatrix}
A_1 & 0 \\
\vdots & \ddots \\
0 & \ldots & A_m
\end{pmatrix},
$$

where each A_j is an upper-triangular matrix of the form

$$
\begin{pmatrix}
\lambda_j & * \\
\vdots & \ddots \\
0 & \ldots & \lambda_j
\end{pmatrix}.
$$
Outline

1. Generalized Eigenvectors
2. The Characteristic Polynomial
3. Decomposition of an Operator
4. Square Roots
5. The Minimal Polynomial
6. Jordan Form
Goal: Show that every *invertible* operator on a complex vector space has a square root.

Example

The operator $T \in \mathcal{L}(\mathbb{C}^3)$ defined by $T(z_1, z_2, z_3) = (z_2, z_3, 0)$ has no square root.
Lemma (8.30)

- Suppose $N \in \mathcal{L}(V)$ is nilpotent.
- Then $I + N$ has a square root.
Theorem (8.32)

- Suppose V is a complex vector space.
- If $T \in \mathcal{L}(V)$ is invertible, then T has a square root.

Invertible maps on complex vector spaces have kth roots, for any positive integer k.
Outline

1. Generalized Eigenvectors
2. The Characteristic Polynomial
3. Decomposition of an Operator
4. Square Roots
5. The Minimal Polynomial
6. Jordan Form
The Minimal Polynomial

Definition

- Suppose \(p \in \mathcal{P}(F) \) is defined by
 \[
p(z) = a_0 + a_1 z + \cdots + a_m z^m.
 \]

- Then \(p \) is called a monic polynomial if \(a_m = 1 \).

Proposition

- Suppose \(T \in \mathcal{L}(V) \).
- There exists a unique monic polynomial \(p \) of smallest degree, such that \(p(T) = 0 \).
- This polynomial is called the minimal polynomial of \(T \).
Example

- The minimal polynomial of I is $z - 1$.
- The minimal polynomial of
 \[
 \begin{pmatrix}
 4 & 1 \\
 0 & 5
 \end{pmatrix}
 \]
 is $20 - 9z + z^2$.

Clearly,

\[\text{deg min poly} \leq (\text{dim } V)^2.\]

By the Cayley-Hamilton Theorem on complex spaces,

\[\text{deg min poly} \leq \text{dim } V.\]

This holds on real spaces also (see Chapter 9).
Definition

- Suppose $p, q \in \mathcal{P}(\mathbb{F})$.
- Then p divides q if
- there exists some $s \in \mathcal{P}(\mathbb{F})$, such that $q = sp$.

Example

$(1 + 3z)^2$ divides $5 + 32z + 57z^2 + 18z^3$, because

$$5 + 32z + 57z^2 + 18z^3 = (2z + 5)(1 + 3z)^2.$$\

Theorem (8.34)

- Let $T \in \mathcal{L}(V)$, and $q \in \mathcal{P}(\mathbb{F})$.
- Then $q(T) = 0$ iff the minimal polynomial of T divides q.
Roots of the Minimal Polynomial are Precisely the Eigenvalues

Theorem (8.36)

- Suppose $T \in \mathcal{L}(V)$.
- Then the roots of the minimal polynomial of T are precisely the eigenvalues of T.
Calculating a Minimal Polynomial

- Find the smallest \(m \) such that

\[
M(I), M(T), \ldots, M(T)^m
\]

is linearly dependent.

- Then find scalars \(a_0, \ldots, a_{m-1} \) such that

\[
a_0 M(I) + \cdots + a_{m-1} M(T)^{m-1} + M(T)^m = 0.
\]

- These scalars are the coefficients of the minimal polynomial.
Example

Consider the operator on \mathbb{C}^5 whose matrix is

$$
\begin{pmatrix}
0 & 0 & 0 & 0 & -3 \\
1 & 0 & 0 & 0 & 6 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}.
$$

The minimal polynomial is $z^5 - 6z + 3$.

The eigenvalues are -1.67, 0.51, 1.40, and $-0.12 \pm 1.59i$.

Outline

1. Generalized Eigenvectors
2. The Characteristic Polynomial
3. Decomposition of an Operator
4. Square Roots
5. The Minimal Polynomial
6. Jordan Form
Suppose $T \in \mathcal{L}(V)$.

A basis of V is called a Jordan Basis for T if

the matrix of T wrt. this basis is

$$
\begin{pmatrix}
A_1 & 0 \\
\vdots & \ddots \\
0 & A_m
\end{pmatrix},
$$

where each A_j has the form

$$
A_j =
\begin{pmatrix}
\lambda_j & 1 & 0 \\
\vdots & \ddots & \ddots \\
0 & \ddots & 1 \\
0 & \cdots & \lambda_j
\end{pmatrix}.
$$
Theorem (8.47)

- Suppose V is a complex vector space, and $T \in \mathcal{L}(V)$.
- Then there is a Jordan basis for T.

See Chapter 12 of *Abstract Algebra*, by Dummit and Foote, for more info.