1. Verify that for $\beta = 0, 1, \infty$, F_β is equal to p, F_1, r, respectively.

2. Find weights $w_i, i = 1, \ldots, 4$, such that weighted accuracy is equal to the given performance metric.
 (a) Accuracy
 (b) Sensitivity
 (c) Specificity
 (d) Precision
 (e) Recall
 (f) F_β

3. Split `germancredit.csv` into 70% training and 30% test data.
 (a) Fit a naive Bayes classifier for predicting default, and calculate the accuracy, sensitivity, specificity, precision, and F_1 measure on the test data.
 (b) Find the probability threshold p_0 that optimizes the F_1 measure on the training data.
 (c) Recalculate the accuracy, sensitivity, specificity, precision, and F_1 measure on the test data using the new probability threshold.