Inverses of Relations and Functions

Definition: If \(f \) is a function then the *inverse of \(f \)*, written \(f^{-1} \), is the function obtained by "reversing" the rule of function \(f \).

For instance, if \(f(x) = x + 5 \) then \(f \) takes an input \(x \) and adds 5 to it to produce an output. To "undo" this, we must subtract 5: \(f^{-1}(x) = x - 5 \).

Similarly, the doubling function \(f(x) = 2x \)

is reversed by the "halving" function \(f^{-1}(x) = \frac{x}{2} \)

In general, a function \(g \) is the inverse of a function \(f \) if

\[
g(f(x)) = x \quad \text{for all } x \text{ in the domain of } f
g \text{ and } f(g(x)) = x \quad \text{for all } x \text{ in the domain of } g
\]

Example

Suppose we have a function \(f \) defined by \(f(x) = 2x - 5 \)

and we wish to find its inverse \(f^{-1}(x) \). First, replace \(f(x) \) with another letter. We will use \(y \):

\[
y = 2x - 5
\]

Solve for \(x \) in terms of \(y \):

\[
y = 2x - 5
y + 5 = 2x
\frac{y + 5}{2} = x
\]

This function has \(x \) as a function of \(y \), that is, whenever \(y \) is input, the output is \(\frac{y + 5}{2} \). This function is the inverse of function \(f \), written \(f^{-1} \). We will change the letter of the input variable to \(x \) and write

\[
f^{-1}(x) = \frac{x + 5}{2}
\]

Note that the graph of \(f \) and \(f^{-1} \) are symmetric about the line \(y = x \):
If f^{-1} is the inverse function of f then the composition of f with f^{-1} is the identity function:
\[f \circ f^{-1}(x) = f(f^{-1}(x)) = x \]
and
\[f^{-1} \circ f(x) = f^{-1}(f(x)) = x \]

Example Using $f(x) = 2x - 5$ and $f^{-1}(x) = \frac{x + 5}{2}$ we have
\[
\begin{align*}
 f(f^{-1}(x)) &= f\left(\frac{x + 5}{2}\right) \\
 &= 2\left(\frac{x + 5}{2}\right) - 5 \\
 &= x + 5 - 5 \\
 &= x.
\end{align*}
\]
It is also the case in this example that $f^{-1}(f(x)) = x$, and you should check this.