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LEARNING TO THINK MATHEMATICALLY:

PROBLEM SOLVING, METACOGNITION, AND

SENSE-MAKING IN MATHEMATICS

THE SCOPE OF THIS CHAPTER

The goals of this chapter are (a) to outline and substantiate a broad

conceptualization of what it means to think mathematically, (b) to summarize the

literature relevant to understanding mathematical thinking and problem solving, and (c)

to point to new directions in research, development and assessment consonant with an

emerging understanding of mathematical thinking and the goals for instruction outlined

here.

The choice of the phrase "learning to think mathematically" in this chapter's title

is deliberately broad. Although the original charter for this chapter was to review the

literature on problem solving and metacognition, those two literatures themselves are

somewhat ill-defined and poorly grounded. As the literature summary will make clear,

problem solving has been used with multiple meanings that range from "working rote

exercises" to "doing mathematics as a professional;" metacognition has multiple and

almost disjoint meanings (e.g. knowledge about one's thought processes, self-regulation

during problem solving) which make it difficult to use as a concept. The chapter outlines

the various meanings that have been ascribed to these terms, and discusses their role

in mathematical thinking. The discussion will not have the character of a classic

literature review, which is typically encyclopedic in its references and telegraphic in its

discussions of individual papers or results. It will, instead, be selective and illustrative,

with main points illustrated by extended discussions of pertinent examples.

Problem solving has, as predicted in the 1980 Yearbook of the National Council

of Teachers of Mathematics (Krulik, 1980, p. xiv), been the theme of the 1980's. The

decade began with NCTM's widely heralded statement, in its Agenda for Action, that

"problem solving must be the focus of school mathematics" (NCTM, 1980, p.1). It

concluded with the publication of Everybody Counts (National Research Council, 1989)

and the Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989),



Learning to think mathematically, Page 3

both of which emphasize problem solving. One might infer, then, that there is general

acceptance of the idea that the primary goal of mathematics instruction should be to

have students become competent problem solvers. Yet, given the multiple

interpretations of the term, the goal is hardly clear. Equally unclear is the role that

problem solving, once adequately characterized, should play in the larger context of

school mathematics. What are the goals for mathematics instruction, and how does

problem solving fit within those goals?

Such questions are complex. Goals for mathematics instruction depend on one's

conceptualization of what mathematics is, and what it means to understand

mathematics. Such conceptualizations vary widely. At one end of the spectrum,

mathematical knowledge is seen as a body of facts and procedures dealing with

quantities, magnitudes, and forms, and relationships among them; knowing

mathematics is seen as having "mastered" these facts and procedures. At the other

end of the spectrum, mathematics is conceptualized as the "science of patterns," an

(almost) empirical discipline closely akin to the sciences in its emphasis on pattern-

seeking on the basis of empirical evidence.

The author's view is that the former perspective trivializes mathematics, that a

curriculum based on mastering a corpus of mathematical facts and procedures is

severely impoverished -- in much the same way that an English curriculum would be

considered impoverished if it focused largely, if not exclusively, on issues of grammar.

He has, elsewhere, characterized the mathematical enterprise as follows.

Mathematics is an inherently social activity, in which a community of

trained practitioners (mathematical scientists) engages in the science of patterns

— systematic attempts, based on observation, study, and experimentation, to

determine the nature or principles of regularities in systems defined axiomatically

or theoretically ("pure mathematics") or models of systems abstracted from real

world objects ("applied mathematics"). The tools of mathematics are abstraction,

symbolic representation, and symbolic manipulation. However, being trained in

the use of these tools no more means that one thinks mathematically than

knowing how to use shop tools makes one a craftsman. Learning to think

mathematically means (a) developing a mathematical point of view — valuing the

processes of mathematization and abstraction and having the predilection to

apply them, and (b) developing competence with the tools of the trade, and using
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those tools in the service of the goal of understanding structure — mathematical

sense-making. (Schoenfeld, forthcoming)

This notion of mathematics has gained increasing currency as the mathematical

community has grappled, in recent years, with issues of what it means to know

mathematics and to be mathematically prepared for an increasingly technological world.

The following quotation from Everybody Counts typifies the view, echoing themes in the

NCTM Standards (NCTM, 1989) and Reshaping School Mathematics (National

Research Council, 1990a).

Mathematics is a living subject which seeks to understand patterns that

permeate both the world around us and the mind within us. Although the

language of mathematics is based on rules that must be learned, it is important

for motivation that students move beyond rules to be able to express things in the

language of mathematics. This transformation suggests changes both in

curricular content and instructional style. It involves renewed effort to focus on:

• Seeking solutions, not just memorizing procedures;

• Exploring patterns, not just memorizing formulas;

• Formulating conjectures, not just doing exercises.

As teaching begins to reflect these emphases, students will have

opportunities to study mathematics as an exploratory, dynamic, evolving

discipline rather than as a rigid, absolute, closed body of laws to be memorized.

They will be encouraged to see mathematics as a science, not as a canon, and

to recognize that mathematics is really about patterns and not merely about

numbers. (National Research Council, 1989, p. 84)

From this perspective, learning mathematics is empowering. Mathematically

powerful students are quantitatively literate. They are capable of interpreting the vast

amounts of quantitative data they encounter on a daily basis, and of making balanced

judgments on the basis of those interpretations. They use mathematics in practical

ways, from simple applications such as using proportional reasoning for recipes or scale

models, to complex budget projections, statistical analyses, and computer modeling.

They are flexible thinkers with a broad repertoire of techniques and perspectives for
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dealing with novel problems and situations. They are analytical, both in thinking issues

through themselves and in examining the arguments put forth by others.

This chapter is divided into three main parts, the first two of which constitute the

bulk of the review. Part I, "Toward an understanding of mathematical thinking," is

largely historical and theoretical, having as its goals the clarification of terms like

problem, problem solving, and doing mathematics. It begins with "Immediate

Background: Curricular trends in the latter 20th Century," a brief recapitulation of the

curricular trends and social imperatives that produced the 1980's focus on problem

solving as the major goal of mathematics instruction. The next section, "On problems

and problem solving: Conflicting definitions," explores contrasting ways in which the

terms problem and problem solving have been used in the literature, and the

contradictions that have resulted from the multiple definitions and the epistemological

stances underlying them. "Enculturation and cognition" outlines recent findings

suggesting the large role of cultural factors in the development of individual

understanding. "Epistemology, ontology, and pedagogy intertwined" describes current

explorations into the nature of mathematical thinking and knowing, and the implications

of these explorations for mathematical instruction. Part I concludes with "Goals for

instruction, and a pedagogical imperative."

Part II, "A framework for understanding mathematical cognition," provides more

of a classical empirical literature review. "The framework" briefly describes an

overarching structure for the examination of mathematical thinking that has evolved over

the past decade. It will be argued that all of these categories -- core knowledge,

problem solving strategies, effective use of one's resources, having a mathematical

perspective, and engagement in mathematical practices -- are fundamental aspects of

thinking mathematically. The sections that follow elaborate on empirical research within

the categories of the framework. "Resources" describes our current understanding of

cognitive structures: the constructive nature of cognition, cognitive architecture,

memory, and access to it. "Heuristics" describes the literature on mathematical problem

solving strategies. "Monitoring and control" describes research related to the aspect of

metacognition known as self-regulation. "Beliefs and affects" considers individuals'

relationships to the mathematical situations they find themselves in, and the effects of

individual perspectives on mathematical behavior and performance. Finally, "Practices"

focuses on the practical side of the issue of socialization discussed in Part I, describing
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instructional attempts to foster mathematical thinking by creating microcosms of

mathematical practice.

Part III, "Issues," raises some practical and theoretical points of concern as it

looks to the future. It begins with a discussion of issues and terms that need

clarification, and of the need for an understanding of methodological tools for inquiry into

problem solving. It continues with a discussion of unresolved issues in each of the

categories of the framework discussed in Part II, and concludes with a brief commentary

on important issues in program design, implementation, and assessment. The

specification of new goals for mathematics instruction consonant with current

understandings of what it means to think mathematically carries with it an obligation to

specify assessment techniques -- means of determining whether students are achieving

those goals. Some preliminary steps in those directions are considered.
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PART I

TOWARD AN UNDERSTANDING OF "MATHEMATICAL THINKING"

Immediate Background: Curricular trends in the latter 20th Century

The American mathematics education enterprise is now undergoing extensive

scrutiny, with an eye toward reform. The reasons for the re-examination, and for a

major overhaul of the current mathematics instruction system, are many and deep.

Among them are the following.

• Poor American showings on international comparisons of student competence.

On objective tests of mathematical "basics" U.S. students score consistently

near the bottom, often grouped with third world countries (International

Association for the Evaluation of Educational Achievement, 1987; National

Commission on Excellence in Education, 1983). Moreover, the mathematics

education infrastructure in the U.S. differs substantially from those of its Asian

counterparts whose students score at the top. Asian students take more

mathematics, and have to meet much higher standards both at school and at

home (Stevenson, Lee & Stigler, 1986).

• Mathematics dropout rates. From grade 8 on, America loses roughly half of the

student pool taking mathematics courses. Of the 3.6 million ninth graders

taking mathematics in 1972, for example, fewer than 300,000 survived to take a

college freshman mathematics class in 1976; 11,000 earned bachelors degrees

in 1980, 2700 earned masters degrees in 1982, and only 400 earned

doctorates in mathematics by 1986. (National Research council, 1989;

National Research Council, 1990a.)

• Equity issues. Of those who drop out of mathematics, there is a

disproportionately high percentage of women and minorities. The effect, in our

increasingly technological society, is that women and minorities are

disproportionately blocked access to lucrative and productive careers (National

Research Council, 1989, 1990b; National Center of Educational Statistics,

1988a).
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• Demographics. "Currently, 8 percent of the labor force consists of scientists or

engineers; the overwhelming majority are White males. But by the end of the

century, only 15 percent of the net new labor force will be While males.

Changing demographics have raised the stake for all Americans" (National

Research Council, 1989, p. 19). The educational and technological

requirements for the work force are increasing, while prospects for more

students in mathematics-based areas are not good (National Center of

Educational Statistics, 1988b).

The 1980's, of course, are not the first time that the American mathematics

enterprise has been declared "in crisis." A major renewal of mathematics and science

curricula in the United States was precipitated on October 4, 1957 by the Soviet Union's

successful launch of the space satellite Sputnik. In response to fears of impending

Soviet technological and military supremacy, scientists and mathematicians became

heavily involved in the creation of new educational materials, often referred to

collectively as the alphabet curricula (e.g. SMSG in mathematics, BSCS in biology,

PSSC in physics). In mathematics, the new math flourished briefly in the 1960's, and

then came to be perceived of as a failure. The general perception was that students

had not only failed to master the abstract ideas they were being asked to grapple with in

the new math, but that in addition they had failed to master the basic skills that the

generations of students who preceded them in the schools had managed to learn

successfully. In a dramatic pendulum swing, the new math was replaced by the back to

basics movement. The idea, simply put, was that the fancy theoretical notions

underlying the new math had not worked, and that we as a nation should make sure that

our students had mastered the basics -- the foundation upon which higher order thinking

skills were to rest.

By the tail end of the 1970's it became clear that the back to basics movement

was a failure. A decade of curricula that focused on rote mechanical skills produced a

generation of students who, for lack of exposure and experience, performed dismally on

measures of thinking and problem solving. Even more disturbing, they were no better at

the basics than the students who had studied the alphabet curricula. The pendulum

began to swing in the opposite direction, toward "problem solving." The first major call

in that direction was issued by the National Council of Supervisors of Mathematics in

1977. It was followed by the National Council of Teachers of Mathematics' (1980)

Agenda for Action, which had as its first recommendation that "problem solving be the
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focus of school mathematics." Just as back to basics was declared to be the theme of

the 1970's, problem solving was declared to be the theme of the 1980's (See, e.g.,

Krulik, 1980). Here is one simple measure of the turn-around. In the 1978 draft

program for the 1980 International Congress on Mathematics Education (ICME IV,

Berkeley, California, 1980: see Zweng, Green, Kilpatrick, Pollak, & Suydam, 1983), only

one session on problem solving was planned, and it was listed under "unusual aspects

of the curriculum." Four years later, problem solving was one of the seven main themes

of the next International Congress (ICME V, Adelaide, Australia: See Burkhardt, Groves,

Schoenfeld, & Stacey, 1988; Carss, 1986). Similarly, "metacognition" was coined in the

late 1970's, appeared occasionally in the mathematics education literature of the early

1980's, and then with ever-increasing frequency through the decade. Problem solving

and metacognition, the lead terms in this article's title, are perhaps the two most

overworked -- and least understood -- buzz words of the 1980's.

This chapter suggests that, on the one hand, much of what passed under the

name of problem solving during the 1980's has been superficial, and that were it not for

the current "crisis," a reverse pendulum swing might well be on its way. On the other

hand, it documents that we now know much more about mathematical thinking,

learning, and problem solving than during the immediate post-Sputnik years, and that a

reconceptualization both of problem solving and of mathematics curricula that do justice

to it is now possible. Such a reconceptualization will in large part be based in part on

advances made in the past decade: detailed understandings of the nature of thinking

and learning, of problem solving strategies and metacognition; evolving conceptions of

mathematics as the "science of patterns" and of doing mathematics as an act of sense-

making; and of cognitive apprenticeship and "cultures of learning."

On problems and problem solving: Conflicting definitions

In a historical review focusing on the role of problem solving in the mathematics

curriculum, Stanic and Kilpatrick (1989, page 1) provide the following brief summary:

Problems have occupied a central place in the school mathematics

curriculum since antiquity, but problem solving has not. Only recently have

mathematics educators accepted the idea that the development of problem

solving ability deserves special attention. With this focus on problem solving has

come confusion. The term problem solving has become a slogan encompassing

different views of what education is, of what schooling is, of what mathematics is,
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and of why we should teach mathematics in general and problem solving in

particular.

Indeed, "problems" and "problem solving" have had multiple and often

contradictory meanings through the years -- a fact that makes interpretation of the

literature difficult. For example, a 1983 survey of college mathematics departments

(Schoenfeld, 1983) revealed the following categories of goals for courses that were

identified by respondents as "problem solving" courses:

• to train students to "think creatively" and/or "develop their problem solving

ability" (usually with a focus on heuristic strategies);

• to prepare students for problem competitions such as the Putnam examinations

or national or international Olympiads;

• to provide potential teachers with instruction in a narrow band of heuristic

strategies;

• to learn standard techniques in particular domains, most frequently in

mathematical modeling;

• to provide a new approach to remedial mathematics (basic skills) or to try to

induce "critical thinking" or analytical reasoning" skills.

The two poles of meaning indicated in the survey are nicely illustrated in two of

Webster's 1979, p. 1434) definitions for the term "problem:"

Definition 1: "In mathematics, anything required to be done, or requiring the doing

of something."

Definition 2: "A question... that is perplexing or difficult."

Problems as routine exercises

Webster's Definition 1, cited immediately above, captures the sense of the term

problem as it has traditionally been used in mathematics instruction. For nearly as long

as we have written records of mathematics, sets of mathematics tasks have been with

us -- as vehicles of instruction, as means of practice, and as yardsticks for the

acquisition of mathematical skills. Often such collections of tasks are anything but
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problems in the sense of the second definition. They are, rather, routine exercises

organized to provide practice on a particular mathematical technique that, typically, has

just been demonstrated to the student. We begin this section with a detailed

examination of such problems, focusing on their nature, the assumptions underlying

their structure and presentation, and the consequences of instruction based largely, if

not exclusively, in such problem sets. That discussion sets the context for a possible

alternative view.

A generic example of a mathematics problem set, with antecedents that Stanic

and Kilpatrick trace to antiquity, is the following excerpt from a late 19th century text, W.

J. Milne's (1897) A Mental Arithmetic. The reader may wish to obtain an answer to

problem 52 by virtue of mental arithmetic before reading the solution Milne provides.

FRACTIONS

52. How much will it cost to plow 32 acres of land at $3.75 per acre?

SOLUTION: -- $3.75 is 3/8 of $10. At $10 per acre the plowing would cost

$320, but since $3.75 is 3/8 of $10, it will cost 3/8 of $320, which is $120.

Therefore, etc.

53. How much will 72 sheep cost at $6.25 per head?

54. A baker bought 88 barrels of flour at $3.75 per barrel. How much did it

all cost?

55. How much will 18 cords of wood cost at $6.662/3 per cord?

[These exercises continue down the page and beyond.]

(Milne, 1897, page 7; cited in Kilpatrick & Stanic)

The particular technique students are intended to learn from this body of text is

illustrated in the solution of problem 52. In all of the exercises, the student is asked to

find the product (A x B), where A is given as a two-digit decimal that corresponds to a

price in dollars and cents. The decimal values have been chosen so that a simple ratio

is implicit in the decimal form of A. That is, A = r x C, where r is a simple fraction and C

is a power of 10. Hence (A x B) can be computed as r x (C x B). Thus, working from



Learning to think mathematically, Page 12

the template provided in the solution to problem 52, the student is expected to solve

problem 53 as follows:

(6.25 x 72) = ([5/8 x 10] x 72) = (5/8 x [10 x 72]) = (5/8 x 720) = 5 x 90 = 450.

The student can obtain the solutions to all of the problems in this section of the text by

applying this algorithm. When the conditions of the problem are changed ever so

slightly (e.g. in problems 52 to 60 the number C is 10, but in problem 61 it changes from

10 to 100), students are given a "suggestion" to help extend the procedure they have

learned:

61. The porter on a sleeping car was paid $37.50 per month for 16

months. How much did he earn?

SUGGESTION: -- $37.50 is 3/8 of $100.

Later in this section we will examine, in detail, the assumptions underlying the

structure of this problem set, and the effects on students of repeated exposure to such

problem sets. For now, we simply note the general structure of the section and the

basic pedagogical and epistemological assumption underlying its design.

Structure:

(a) A task is used to introduce a technique;

(b) The technique is illustrated;

(c) More tasks are provided so that the student may practice the illustrated skills.

Basic Assumption:

At the end of having worked this cluster of exercises, the students will have a

new technique in their mathematical tool kit. Presumably, the sum total of such

techniques (the curriculum) reflects the corpus of mathematics the student is

expected to master; the set of techniques the student has mastered comprises

the student's mathematical knowledge and understanding.

Traditional Uses of "Problem Solving" (in the sense of tasks required to be
done): Means to a focused end.



Learning to think mathematically, Page 13

In their historical review of problem solving, Stanic and Kilpatrick (1989) identify

three main themes regarding its usage. In the first theme, which they call "problem

solving as context," problems are employed as vehicles in the service of other curricular

goals. They identify five such roles that problems play:

1. As a justification for teaching mathematics. "Historically, problem solving has

been included in the mathematics curriculum in part because the problems provide

justification for teaching mathematics at all. Presumably, at least some problems

related in some way to real-world experiences were included in the curriculum to

convince students and teachers of the value of mathematics." (p. 13)

2. To provide specific motivation for subject topics. Problems are often used to

introduce topics with the implicit or explicit understanding that "when you have learned

the lesson that follows, you will be able to solve problems of this sort."

3. As recreation. Recreational problems are intended to be motivational, in a

broader sense than in (2). They show that "math can be fun" and that there are

entertaining uses of the skills students have mastered.

4. As a means of developing new skills. Carefully sequenced problems can

introduce students to new subject matter, and provide a context for discussions of

subject matter techniques.

5. As practice. Milne's exercises, and the vast majority of school mathematics

tasks, fall into this category. Students are shown a technique, and then given problems

to practice on, until they have mastered the technique.

In all five of these roles, problems are seen as rather prosaic entities (recall

Webster's definition 1) and are used as a means to one of the ends listed above. That

is, problem solving is not usually seen as a goal in itself, but solving problems is seen

as facilitating the achievement of other goals. "Problem solving" has a minimal

interpretation: working the tasks that have been set before you.

The second theme identified by Stanic and Kilpatrick (1989) is "problem solving

as skill." This theme has its roots in a reaction to Thorndike's work (e.g. Thorndike &

Woodworth, 1901). Thorndike's research debunked the simple notion of "mental

exercise," in which it was assumed that learning reasoning skills in domains such as

mathematics would result in generally improved reasoning performance in other
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domains. Hence if mathematical problem solving was to be important, it was not

because it made one a better problem solver in general, but because solving

mathematical problems was valuable in its own right. This led to the notion of problem

solving as skill -- a skill still rather narrowly defined (that is, being able to obtain

solutions to the problems other people give you to solve), but worthy of instruction in its

own right. Though there might be some dispute on the matter, this author's perspective

is that the vast majority of curricular development and implementation that went on

under the name of "problem solving" in the 1980's was of this type.

Problem solving is often seen as one of a number of skills to be taught in

the school curriculum. According to this view, problem solving is not necessarily

seen as a unitary skill, but there is a clear skill orientation....

Putting problem solving in a hierarchy of skills to be acquired by students

leads to certain consequences for the role of problem solving in the curriculum....

[D]istinctions are made between solving routine and nonroutine problems. That

is, nonroutine problem solving is characterized as a higher level skill to be

acquired after skill at solving routine problems (which, in turn, is to be acquired

after students learn basic mathematical concepts and skills). (Stanic and

Kilpatrick,1989, p. 15)

It is important to note that, even though in this second interpretation problem

solving is seen as a skill in its own right, the basic underlying pedagogical and

epistemological assumptions in this theme are precisely the same as those outlined for

Milne's examples in the discussion above. Typically problem solving techniques (i.e.

drawing diagrams, looking for patterns when n = 1,2,3,4,...) are taught as subject

matter, with practice problems so that the techniques can be mastered. After receiving

this kind of problem solving instruction (often a separate part of the curriculum), the

students' "mathematical tool kit" is presumed to contain "problem solving skills" as well

as the facts and procedures they have studied. This expanded body of knowledge

presumably comprises the students' mathematical knowledge and understanding.

The third theme identified by Stanic and Kilpatrick (1989) is "problem solving as

art." This view, in strong contrast to the previous two, holds that real problem solving

(that is, working problems of the "perplexing" kind) is the heart of mathematics, if not

mathematics itself. We now turn to that view, as expressed by some notable

mathematicians and philosophers.
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On problems that are problematic: Mathematicians' perspectives.

As noted earlier, mathematicians are hardly unanimous in their conceptions of

problem solving. Courses in problem solving at the university level have goals that

range from "remediation" and "critical thinking" to "developing creativity." Nonetheless,

there is a particularly mathematical point of view regarding the role that problems have

in the lives of those who do mathematics.

The unifying theme is that the work of mathematicians, on an ongoing basis, is

solving problems -- problems of the "perplexing or difficult" kind, that is. Halmos makes

the claim simply. As the title of his (1980) article announces, solving problems is "the

heart of mathematics."

What does mathematics really consist of? Axioms (such as the parallel

postulate)? Theorems (such as the fundamental theorem of algebra)? Proofs

(such as Gödel's proof of undecidability)? Definitions (such as the Menger

definition of dimension)? Theories (such as category theory)? Formulas (such as

Cauchy's integral formula)? Methods (such as the method of successive

approximations)?

Mathematics could surely not exist without these ingredients; they are all

essential. It is nevertheless a tenable point of view that none of them is at the

heart of the subject, that the mathematician's main reason for existence is to

solve problems, and that, therefore, what mathematics really consists of is

problems and solutions. (Halmos, 1980, p. 519)

Some famous mathematical problems are named as such, e.g. the "four color

problem" (which when solved, became the four color theorem). Others go under the

name of hypothesis (e.g. the Riemann hypothesis) or conjecture (Goldbach's

conjecture, that every even number greater than 2 can be written as the sum of two odd

primes). Some problems are motivated by practical or theoretical concerns oriented in

the real world (applied problems), others by abstract concerns (e.g. what is the

distribution of "twin primes?"). The ones mentioned above are the "big" problems,

which have been unsolved for decades and whose solution earns the solvers significant

notice. But they differ only in scale from the problems encountered in the day-to-day

activity of mathematicians. Whether pure or applied, the challenges that ultimately

advance our understanding take weeks, months, and often years to solve. This being
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the case, Halmos argues, students' mathematical experiences should prepare them for

tackling such challenges. That is, students should engage in "real" problem solving,

learning during their academic careers to work problems of significant difficulty and

complexity.

I do believe that problems are the heart of mathematics, and I hope that as

teachers, in the classroom, in seminars, and in the books and articles we write,

we will emphasize them more and more, and that we will train our students to be

better problem-posers and problem solvers than we are. (Halmos, 1980, p. 524)

The mathematician best known for his conceptualization of mathematics as

problem solving, and for his work in making problem solving the focus of mathematics

instruction, is Pólya. Indeed, the edifice of problem solving work erected in the past two

decades stands largely on the foundations of his work. The mathematics education

community is most familiar with Pólya's work through his (1945/1957) introductory

volume How to solve it, in which he introduced the term "modern heuristic" to describe

the art of problem solving, and his subsequent elaborations on the theme in the two

volume sets Mathematics and plausible reasoning (1954) and Mathematical discovery

(1962, 1965/1981). In fact, Pólya's work on problem solving and "method" was

apparent as early as the publication of his and Szegö's (1925) Problems and theorems

in analysis. In this section we focus on the broad mathematical and philosophical

themes woven through Pólya's work on problem solving. Details regarding the

implementation of heuristic strategies are pursued in the research review.

It is essential to understand Pólya's conception of mathematics as an activity. As

early as the 1920's, Pólya had an interest in mathematical heuristics, and he and Szegö

included some heuristics (in the form of aphorisms) as suggestions for guiding students'

work through the difficult problem sets in their (1925) Aufgaben und Lehrsätze aus der

Analysis I. Yet the role of mathematical engagement -- of "hands on" mathematics, if

you will -- was central in Pólya's view.

General rules which could prescribe in detail the most useful discipline of

thought are not known to us. Even if such rules could be formulated, they could

not be very useful... [for] one must have them assimilated into one's flesh and

blood and ready for instant use.... The independent solving of challenging

problems will aid the reader far more than the aphorisms which follow, although

as a start these can do him no harm. ( Pólya and Szegö, 1925, preface, p. vii.)



Learning to think mathematically, Page 17

Part of that engagement, according to Pólya, was the active engagement of

discovery, one which takes place in large measure by guessing. Eschewing the notion

of mathematics as a formal and formalistic deductive discipline, Pólya argued that

mathematics is akin to the physical sciences in its dependence on guessing, insight,

and discovery.

To a mathematician, who is active in research, mathematics may appear

sometimes as a guessing game; you have to guess a mathematical theorem

before you prove it, you have to guess the idea of the proof before you carry

through all the details.

To a philosopher with a somewhat open mind all intelligent acquisition of

knowledge should appear sometimes as a guessing game, I think. In science as

in everyday life, when faced with a new situation, we start out with some guess.

Our first guess may fall short of the mark, but we try it and, according to the

degree of success, we modify it more or less. Eventually, after several trials and

several modifications, pushed by observations and led by analogy, we may arrive

at a more satisfactory guess. The layman does not find it surprising that the

naturalist works this way.... And the layman is not surprised to hear that the

naturalist is guessing like himself. It may appear a little more surprising to the

layman that the mathematician is also guessing. The result of the

mathematician's creative work is demonstrative reasoning, a proof, but the proof

is discovered by plausible reasoning, by guessing....

Mathematical facts are first guessed and then proved, and almost every

passage in this book endeavors to show that such is the normal procedure. If the

learning of mathematics has anything to do with the discovery of mathematics,

the student must be given some opportunity to do problems in which he first

guesses and then proves some mathematical fact on an appropriate level.

(G. Pólya, Patterns of Plausible inference, pp. 158-160)

For Pólya, mathematical epistemology and mathematical pedagogy are deeply

intertwined. Pólya takes it as given that for students to gain a sense of the

mathematical enterprise, their experience with mathematics must be consistent with the

way mathematics is done. The linkage of epistemology and pedagogy is, as well, the

major theme of this chapter. The next section of this chapter elaborates a particular



Learning to think mathematically, Page 18

view of mathematical thinking, discussing mathematics as an act of sense-making,

socially constructed and socially transmitted. It argues that students develop their

sense of mathematics -- and thus how they use mathematics -- from their experiences

with mathematics (largely in the classroom). It follows that classroom mathematics

must mirror this sense of mathematics as a sense-making activity, if students are to

come to understand and use mathematics in meaningful ways.

Enculturation and Cognition

An emerging body of literature (see, e.g., Bauersfeld, 1979; Brown, Collins, &

Duguid, 1989; Collins, Brown, and Newman, 1989; Lampert, in press; Lave, 1988; Lave,

Smith, & Butler, 1989; Greeno, 1989; Resnick, 1989; Rogoff & Lave, 1984; Schoenfeld,

1989a, in press; see especially Carraher's chapter XXX in this volume) conceives of

mathematics learning as an inherently social (as well as cognitive) activity, an

essentially constructive activity instead of an absorbtive one.

By the mid-1980's, the constructivist perspective -- with roots in Piaget's work

(e.g. Piaget, 1954), and with contemporary research manifestations such as the

misconceptions literature (Brown & Burton, 1978; diSessa, 1983; Novak, 1987) -- was

widely accepted in the research community as being well grounded. Romberg and

Carpenter (1986) stated the fact bluntly: "The research shows that learning proceeds

through construction, not absorption" (p. 868). The constructivist perspective pervades

this Handbook as well: see, e.g., chapters XXX, XXX, XXX, and XXX. However, the

work cited in the previous paragraph extends the notion of constructivism from the

"purely cognitive" sphere, where much of the research has been done, to the social

sphere. As such, it blends with some theoretical notions from the social literature.

Resnick, tracing contemporary work to antecedents in the work of George Herbert Mead

(1934) and Lev Vygotsky (1978), states the case as follows.

Several lines of cognitive theory and research point toward the hypothesis

that we develop habits and skills of interpretation and meaning construction

though a process more usefully conceived of as socialization than instruction.

(Resnick, 1989, p. 39)

The notion of socialization as identified by Resnick [or, as we shall prefer to call

it, enculturation -- entering and picking up the values of a community or culture] is

central, in that it highlights the importance of perspective and point of view as core
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aspects of knowledge. The case can be made that a fundamental component of

thinking mathematically is having a mathematical point of view -- seeing the world in

ways like mathematicians do.

[T]he reconceptualization of thinking and learning that is emerging from

the body of recent work on the nature of cognition suggests that becoming a

good mathematical problem solver -- becoming a good thinker in any domain --

may be as much a matter of acquiring the habits and dispositions of interpretation

and sense-making as of acquiring any particular set of skills, strategies, or

knowledge. If this is so, we may do well to conceive of mathematics education

less as an instructional process (in the traditional sense of teaching specific, well-

defined skills or items of knowledge), than as a socialization process. In this

conception, people develop points of view and behavior patterns associated with

gender roles, ethnic and familial cultures, and other socially defined traits. When

we describe the processes by which children are socialized into these patterns of

thought, affect, and action, we describe long-term patterns of interaction and

engagement in a social environment. (Resnick, 1989, p. 58)

This "cultural" perspective is well grounded anthropologically, but it is relatively

new to the mathematics education literature. The main point, that point of view is a

fundamental determinant of cognition, and that the community to which one belongs

shapes the development of one's point of view, is made eloquently by Clifford Geertz.

Consider... Evans-Pritchard's famous discussion of Azande witchcraft. He

is, as he explicitly says but no one seems much to have noticed, concerned with

common-sense thought -- Zande common-sense thought -- as the general

background against which the notion of witchcraft is developed....

Take a Zande boy, he says, who has stubbed his foot on a tree stump and

developed an infection. Tho boy says it's witchcraft. Nonsense, says Evans-

Pritchard, out of his own common-sense tradition: you were merely bloody

careless; you should have looked where you were going. I did look where I was

going; you have to with so many stumps about, says the boy -- and if I hadn't

been witched I would have seen it. Furthermore, all cuts do not take days to

heal, but on the contrary, close quickly, for that is the nature of cuts. But this one

festered, thus witchcraft must be involved.
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Or take a Zande potter, a very skilled one, who, when now and again one

of his pots cracks in the making, cries "witchcraft!" Nonsense! says Evans-

Pritchard, who, like all good ethnographers, seems never to learn: of course

sometimes pots crack in the making; it's the way of the world. But, says the

potter, I chose the clay carefully, I took pains to remove all the pebbles and dirt, I

built up the clay slowly and with care, and I abstained from sexual intercourse the

night before. And still it broke. What else can it be but witchcraft? (Geertz, 1985,

p. 78)

Geertz's point is that Evans-Pritchard and the African tribesmen agree on the

"data" (the incidents they are trying to explain), but that their interpretations of what the

incidents mean are radically different. Each person's interpretation is derived from his

own culture, and seems common-sensical. The anthropologist in the West, and the

Africans on their home turf, have each developed points of view consonant with the

mainstream perspectives of their societies. And, those culturally determined (socially

mediated) views determine what sense they make of what they see.

The same, it is argued, is true of members of "communities of practice," groups

of people engaged in common endeavors within their own culture. Three such groups

include the community of tailors in "Tailors' Alley" in Monrovia, Liberia, studied by Jean

Lave (in preparation), the community of practicing mathematicians, and the community

that spends its daytime hours in schools. In each case, the "habits and dispositions"

(see the quotation from Resnick, above) of community members are culturally defined,

and have great weight in shaping individual behavior. We discuss the first two here, the

third in the next section. First, Lave's study (which largely inspired the work on cognitive

apprenticeship discussed below) examined the apprenticeship system by which

Monrovian tailors learn their skills. Schoenfeld summarized Lave's perspective on what

"learning to be a tailor" means, as follows.

Being a tailor is more than having a set of tailoring skills. It includes a way

of thinking, a way of seeing, and having a set of values and perspectives. In

Tailors' Alley, learning the curriculum of tailoring and learning to be a tailor are

inseparable: the learning takes place in the context of doing real tailors' work, in

the community of tailors. Apprentices are surrounded by journeymen and master

tailors, from whom they learn their skills -- and among whom they live, picking up

their values and perspectives as well. These values and perspectives are not

part of the formal curriculum of tailoring, but they are a central defining feature of
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the environment, and of what the apprentices learn. The apprentice tailors are

apprenticing themselves into a community, and when they have succeeded in

doing so, they have adopted a point of view as well as a set of skills -- both of

which define them as tailors. [If this notion seems a bit farfetched, think of

groups of people such as lawyers, doctors, automobile salesmen, or university

professors in our own society. That there are political (and other) stereotypes of

these groups indicates that there is more to membership in any of these

communities than simply possessing the relevant credentials or skills.]

(Schoenfeld, 1989c, pp. 85-86)

Second, there is what might be called "seeing the world through the lens of the

mathematician." As illustrations, here are two comments made by the applied

mathematician Henry Pollak.

How many saguarro cacti more than 6 feet high are in the state of

Arizona? I read that the saguarro is an endangered species. Developers tear

them down when they put up new condominiums. So when I visited Arizona 2 or

3 years ago I decided to try an estimate. I came up with 108. Let me tell you

how I arrived at that answer. In the areas where they appear, saguarros seem to

be fairly regularly spaced, approximately 50 feet apart. That approximation gave

me 102 to a linear mile, which implied 104 in each square mile. The region where

the saguarros grow is at least 50 by 200 miles. I therefore multiplied 104 x 104 to

arrive at my final answer. I asked a group of teachers in Arizona for their

estimate, and they were at a loss as to how to begin. (Pollak, 1987, pp. 260-261)

If you go into a supermarket, you will typically see a number of checkout

counters, one of which is labeled "Express Lane" for x packages or fewer. If you

make observations on x, you'll find it varies a good deal. In my home town, the

A&P allow 6 items; the Shop-Rite, 8; and Kings, 10. I've seen numbers vary from

5 to 15 across the country. If the numbers vary that much, then we obviously

don't understand what the correct number should be. How many packages

should be allowed in an express line? (Pollak, 1987, pp. 260-261)

Both of these excerpts exemplify the habits and dispositions of the

mathematician. Hearing that the saguarro is endangered, Pollak almost reflexively asks

how many saguarro there might be; he then works out a crude estimate on the basis of

available data. This predilection to quantify and model is certainly a part of the
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mathematical disposition, and is not typical of those outside mathematically oriented

communities. (Indeed, Pollak notes that neither the question nor the mathematical tools

to deal with it seemed natural to the teachers he discussed it with.) That disposition is

even clearer in the second example, thanks to Pollak's language. Note that Pollak

perceives of the supermarket as a mathematical context -- again, hardly a typical

perspective. For most people, the number of items allowed in the express line is simply

a matter of the supermarket's prerogative. For Pollak, the number is a variable, and the

task of determining the "right" value of that variable is an optimization problem. The

habit of seeing phenomena in mathematical terms is also part of the mathematical

disposition.

In short, Pollak sees the world from a mathematical point of view. Situations that

others might not attend to at all serve for him as the contexts for interesting

mathematical problems. The issues he raises in what to most people would be non-

mathematical contexts -- supermarket check-out lines and desert fields -- are inherently

mathematical in character. His language ("for x packages or fewer") is that of the

mathematician, and his approaches to conceptualizing the problems (optimization for

the supermarket problem, estimation regarding the number of cactus) employ typical

patterns of mathematical reasoning. There are, of course, multiple mathematical points

of view. For a charming and lucid elaboration of many of these, see Davis & Hersh

(1981).

Epistemology, Ontology, and Pedagogy Intertwined

In short, the point of the literature discussed in the previous section is that

learning is culturally shaped and defined: people develop their understandings of any

enterprise from their participation in the "community of practice" within which that

enterprise is practiced. The "lessons" students learn about mathematics in our current

classrooms are broadly cultural, extending far beyond the scope of the mathematical

facts and procedures (the explicit curriculum) that they study. As Hoffman (1989) points

out, this understanding gives added importance to a discussion of epistemological

issues. Whether or not one is explicit about one's epistemological stance, he observes,

what one thinks mathematics is will shape the kinds of mathematical environments one

creates -- and thus the kinds of mathematical understandings that one's students will

develop.
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Here we pursue the epistemological-to-pedagogocal link in two ways. First, we

perform a detailed exegesis of the selection of "mental arithmetic" exercises from Milne

(1897), elaborating the assumptions that underlie it, and the consequences of curricula

based on such assumptions. That exegesis is not derived from the literature, although it

is consistent with it. The author's intention in performing the analysis to help establish

the context for the literature review, particularly the sections on beliefs and context.

Second, we examine some issues in mathematical epistemology and ontology. As

Hoffman observes, it is important to understand what doing mathematics is, if one

hopes to establish classroom practices that will help students develop the right

mathematical point of view. The epistemological explorations in this section establish

the basis for the pedagogical suggestions that follow later in the chapter.

On problems as practice: An exegesis of Milne's problem set

The selection of exercises from Milne's Mental Arithmetic introduced earlier in

this chapter has the virtue that it is both antiquated and modern: One can examine it "at

a distance" because of its age, but one will also find its counterparts in almost every

classroom around the country. We shall examine it at length.

Recall the first problem posed by Milne: "How much will it cost to plow 32 acres

of land at $3.75 per acre?" His solution was to convert $3.75 into a fraction of $10, as

follows. "$3.75 is 3/8 of $10. At $10 per acre the plowing would cost $320, but since

$3.75 is 3/8 of $10, it will cost 3/8 of $320, which is $120." This solution method was

then intended to be applied to all of the problems that followed.

It is perfectly reasonable, and useful, to devote instructional time to the technique

Milne illustrates. The technique is plausible from a practical point of view, in that there

might well be circumstances where a student could most easily do computations of the

type demonstrated. It is also quite reasonable from a mathematical point of view. Being

able to perceive A x B as (r x C) x B = r x (BC) when the latter is easier to compute, and

carrying out the computation, is a sign that one has developed some understanding of

fractions and of multiplicative structures; one would hope that students would develop

such understandings in their mathematics instruction. The critique that follows is not

based in an objection to the potential value or utility of the mathematics Milne presents,

but in the ways in which the topic is treated.
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Issue 1: Face validity. At first glance the technique illustrated in problem 52

seems useful and the solutions to the subsequent problems appear appropriate. As

noted above, one hopes that students will have enough "number sense" to be able to

compute 32 x $3.75 in the absence of paper and pencil. However, there is the serious

question as to whether one would really expect students to work the problems the way

Milne suggests. In a quick survey as this chapter was being written, the author asked

four colleagues to solve problem 52 mentally. Three of the four solutions did convert

the ".75" in $3.75 to a fractional equivalent, but none of the four employed fractions in

the way suggested by Milne. The fourth avoided fractions altogether, but also avoided

the standard algorithm. Here is what the four did.

• Two of the people converted 3.75 into 33/4, and then applied the distributive

law to obtain

(33/4)(32) = (3 + 3/4)(32) = 96 + (3/4)(32) = 96 + 24 = 120.

• One expressed 3.75 as (4 - 1/4), and then distributed as follows:

(4 - 1/4)(32) = 128 - (1/4)(32) = 128 - 8 = 120.

• One noted that 32 is a power of 2. He divided and multiplied by 2's until the

arithmetic became trivial:

(32)(3.75) = (16)(7.5) = (8)(15) = (4)(30) =120.

In terms of "mental economy," we note, each of the methods used is as easy to employ

as the one presented by Milne.

Issue 2: The examples are contrived to illustrate the mathematical technique at
hand. In real life one rarely if ever encounters unit prices such as $6.662/3. (We do,

commonly, see prices such as "3 for $20.00.") The numbers used in problem 55, and

others, were clearly selected so that students could successfully perform the algorithm

taught in this lesson. On the one hand, choosing numbers in this way makes it easy for

students practice the technique. On the other hand, the choice makes the problem itself

implausible. Moreover, the problem settings (cords of wood, price of sheep, and so on)

are soon seen to be window dressing designed to make the problems appear relevant,

but which in fact have no real role in the problem. As such, the artificiality of the
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examples moves the corpus of exercises from the realm of the practical and plausible to

the realm of the artificial.

Issue 3: The epistemological stance underlying the use of such exercise sets. In

introducing Milne's examples we discussed the pedagogical assumptions underlying the

use of such structured problem sets in the curriculum. Here we pursue the ramifications

of those assumptions.

Almost all of Western education, particularly mathematics education and

instruction, is based on a traditional philosophical perspective regarding epistemology,

"the theory or science of the method or grounds of knowledge" (Oxford English

Dictionary, page 884). The fundamental concerns of epistemology regard the nature of

knowing and knowledge. "Know, in its most general sense, has been defined by some

as 'to hold for true or real with assurance and on (what is held to be) an adequate

objective foundation'" (Oxford English Dictionary, page 1549). In more colloquial terms,

the generally held view -- often unstated or implicit, but nonetheless powerful -- is that

what we know is what we can justifiably demonstrate to be true; our knowledge is the

sum total of what we know. That is, one's mathematical knowledge is the set of

mathematical facts and procedures one can reliably and correctly use.1

A consequence of this perspective is that instruction has traditionally focused on

the content aspect of knowledge. Traditionally one defines what students ought to know

in terms of chunks of subject matter, and characterizes what a student knows in terms

of the amount of content that has been "mastered.2" As natural and innocuous as this

view of "knowledge as substance" may seem, it has serious entailments (see issue 4).

From this perspective, "learning mathematics" is defined as mastering, in some

coherent order, the set of facts and procedures that comprise the body of mathematics.

The route to learning consists of delineating the desired subject matter content as

1Jim Greeno pointed out in his review of this chapter that most instruction gives short
shrift to the "justifiably demonstrate" part of mathematical knowledge -- that it focuses
on using techniques, with minimal attention to having students justify the procedures
in a deep way. He suggests that if demonstrating is taken in a deep sense, it might be
an important curricular objective.

2The longevity of Bloom's (1956) taxonomies, and the presence of standardized
curricula and examinations, provides clear evidence of the pervasiveness of this
perspective.
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clearly as possible, carving it into bite-sized pieces, and providing explicit instruction

and practice on each of those pieces so that students master them. From the content

perspective, the whole of a student's mathematical understanding is precisely the sum

of these parts.

Commonly, mathematics is associated with certainty; knowing it, with

being able to get the right answer, quickly (Ball, 1988; Schoenfeld, 1985b;

Stodolsky, 1985). These cultural assumptions are shaped by school experience,

in which doing mathematics means following the rules laid down by the teacher;

knowing mathematics means remembering and applying the correct rule when

the teacher asks a question; and mathematical truth is determined when the

answer is ratified by the teacher. Beliefs about how to do mathematics and what

it means to know it in school are acquired through years of watching, listening,

and practicing. (Lampert, in press, p. 5)

These assumptions play out clearly in the selection from Milne. The topic to be

mastered is a particular, rather narrow technique. The domain of applicability of the

technique is made clear: Initially it applies to decimals that can be written as

(a/b) x 10, and then the technique is extended to apply to decimals that can be written

as (a/b) x 100. Students are constrained to use this technique, and when they master it,

they move on to the next. And, experience with problem sets of this type is their sole

encounter for many students.

Issue 4: The cumulative effects of such exercise sets. As Lampert notes,

students' primary experience with mathematics -- the grounds upon which they build

their understanding of the discipline -- is their exposure to mathematics in the

classroom. The impression given by this set of exercises, and thousands like it that

students work in school, is that there is one right way to solve the given set of problems

-- the method provided by the text or instructor. As indicated in the discussion of Issue

1, this is emphatically not the case; there are numerous ways to arrive at the answer.

However, in the given instructional context only one method appears legitimate. There

are numerous consequences to repeated experiences of this type.

One consequence of experiencing the curriculum in bite-size pieces is that

students learn that answers and methods to problems will be provided to them; the

students are not expected to figure out the methods by themselves. Over time most

students come to accept their passive role, and to think of mathematics as "handed
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down" by experts for them to memorize (Carpenter, Lindquist, Matthews, & Silver, 1983;

National Assessment of Educational Progress, 1983).

A second consequence of the non-problematic nature of these "problems" is that

students come to believe that in mathematics, (a) one should have a ready method for

the solution of a given problem, and (b) the method should produce an answer to the

problem in short order (Carpenter et al., 1983; National Assessment of Educational

Progress, 1983; Schoenfeld, 1988, 1989b). In the 1983 National Assessment, about

half of the students surveyed agreed with the statement "learning mathematics is mostly

memorizing." Three quarters of the students agreed with the statement "Doing

mathematics requires lots of practice in following rules," and nine students out of ten

with the statement "There is always a rule to follow in solving mathematics problems"

(NAEP, 1983, pp. 27-28). As a result of holding such beliefs, students may not even

attempt problems for which they have no ready method, or may curtail their efforts after

only a few minutes without success.

More importantly, the methods imposed on students by teacher and texts may

appear arbitrary and may contradict the alternative methods that the students have tried

to develop for themselves. For example, all of the problems given by Milne -- and more

generally, in most mathematics -- can be solved in a variety of ways. However, only

one method was sanctioned by in Milne's text. Recall in addition that some of the

problems were clearly artificial, negating the "practical" virtues of the mathematics.

After consistent experiences of this type, students may simply give up trying to make

sense of the mathematics. They may take the problems to be exercises of little

meaning, despite their applied cover stories; they may come to believe that

mathematics is not something they can make sense of, but rather something almost

completely arbitrary (or at least whose meaningfulness is inaccessible to them) and

which must thus be memorized without looking for meaning -- if they can cope with it at

all (Lampert, in press; Stipek & Weisz, 1981; Tobias, 1978). More detail is given in the

section on belief systems.

The mathematical enterprise

Over the past two decades there has been a significant change in the face of

mathematics (its scope and the very means by which it is carried out), and in the

community's understanding of what it is to know and do mathematics. A series of

recent articles and reports (Hoffman, 1989; Everybody Counts (National Research
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Council, 1989); Steen, 1988) attempts to characterize the nature of contemporary

mathematics, and to point to changes in instructions that follow from the suggested

reconceptualization. The main thrust of this reconceptualization is to think of

mathematics, broadly, as "the science of patterns."

MATHEMATICS ... searching for patterns

Mathematics reveals hidden patterns that help us understand the world

around us. Now much more than arithmetic and geometry, mathematics today is

a diverse discipline that deals with data, measurements, and observations from

science; with inference, deduction, and proof; and with mathematical models of

natural phenomena, of human behavior, and of social systems.

The cycle from data to deduction to application recurs everywhere

mathematics is used, from everyday household tasks such as planning a long

automobile trip to major management problems such as scheduling airline traffic

or managing investment portfolios. The process of "doing" mathematics is far

more than just calculation or deduction; it involves observation of patterns, testing

of conjectures, and estimation of results.

As a practical matter, mathematics is a science of pattern and order. Its

domain is not molecules or cells, but numbers, chance, form, algorithms, and

change. As a science of abstract objects, mathematics relies on logic rather than

observation as its standard of truth, yet employs observation, simulation, and

even experimentation as a means of discovering truth (Everybody Counts, p. 31).

In this quotation there is a major shift from the traditional focus on the content

aspect of mathematics discussed above (where attention is focused primarily on the

mathematics one "knows"), to the process aspects of mathematics -- to what Everybody

Counts calls calls doing mathematics. Indeed, content is mentioned only in passing,

while modes of thought are specifically highlighted in the first page of the section.

In addition to theorems and theories, mathematics offers distinctive modes

of thought which are both versatile and powerful, including modeling, abstraction,

optimization, logical analysis, inference from data, and use of symbols.

Experience with mathematical modes of thought builds mathematical power -- a

capacity of mind of increasing value in this technological age that enables one to

read critically, to identify fallacies, to detect bias, to assess risk, and to suggest
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alternatives. Mathematics empowers us to understand better the information-

laden world in which we live (Everybody Counts, pp. 31-32).

One main change, then, is that there is a large focus on process rather than on

mathematical content in describing both what mathematics is and what one hopes

students will learn from studying it. In this sense, mathematics appears much more like

science than it would if one focused solely on the subject matter. Indeed, the "science

of patterns" may seem so broad a definition as to obscure the mathematical core

contained therein. What makes it mathematical is the domain over which the

abstracting or patterning is done, and the choice of tools and methods typically

employed. To repeat from the introductory definition: mathematics consists of

"systematic attempts, based on observation, study, and experimentation, to determine

the nature or principles of regularities in systems defined axiomatically or theoretically

("pure mathematics") or models of systems abstracted from real world objects ("applied

mathematics"). The tools of mathematics are abstraction, symbolic representation, and

symbolic manipulation."

A second main change, reflected in the statement that "mathematics relies on

logic rather than observation as its standard of truth, yet employs observation,

simulation, and even experimentation as a means of discovering truth" reflects a

growing understanding of mathematics as an empirical discipline of sorts, one in which

mathematical practitioners gather "data" in the same ways that scientists do. This

theme is seen in the writings of Lakatos (1977, 1978), who argued that mathematics

does not, as it often appears, proceed inexorably and inevitably by deduction from a

small set of axioms; rather that the community of mathematicians decides what is

"axiomatic," in effect making new definitions if the ones that have been used turn out to

have untoward consequences. A third change is that doing mathematics is increasingly

coming to be seen as a social and collaborative act. Steen's (1988) examples of major

progress in mathematics: in number theory (the factorization of huge numbers and

prime testing, requiring collaborative networks of computers), in the Nobel Prize-winning

application of the Radon Transform to provide the mathematics underlying the

technology for computer assisted tomography (CAT) scans, and in the solution of some

recent mathematical conjectures such as the four-color theorem, are all highly

collaborative efforts. Collaboration, on the individual level, is discussed with greater

frequency in the "near mathematical" literature, as in these two excerpts from Albers
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and Alexanderson's (1985) Mathematical People: Profiles and Interviews. Peter Hilton

lays out the benefits of collaboration as follows.

First I must say that I do enjoy it. I very much enjoy collaborating with

friends. Second, I think it is an efficient thing to do because ... if you are just

working on your own [you may] run out of steam.... But with two of you, what

tends to happen is that when one person begins to feel a flagging interest, the

other one provides the stimulus.... The third thing is, if you choose people to

collaborate with who somewhat complement rather than duplicate the

contribution that you are able to make, probably a better product results. (quoted

in Albers & Alexanderson, 1985, P. 141).

Persi Diaconis says the following.

There is a great advantage in working with a great co-author. There is

excitement and fun, and it's something I notice happening more and more in

mathematics. Mathematical people enjoy talking to each other.... Collaboration

forces you to work beyond your normal level. Ron Graham has a nice way to put

it. He says that when you've done a joint paper, both co-authors do 75% of the

work, and that's about right.... Collaboration for me means enjoying talking and

explaining, false starts, and the interaction of personalities. It's a great, great joy

to me. (quoted in Albers & Alexanderson, 1985, pp. 74-75).

For these individuals, and for those engaged in the kinds of collaborative efforts

discussed by Steen, membership in the mathematical community is without question an

important part of their mathematical lives. However, there is an emerging

epistemological argument suggesting that mathematical collaboration and

communication have a much more important role than indicated by the quotes above.

According to that argument, membership in a community of mathematical practice is

part of what constitutes mathematical thinking and knowing. Greeno notes that this idea

takes some getting used to.

The idea of a [collaborative] practice contrasts with our standard ways of

thinking about knowledge. We generally think of knowledge as some content in

someone's mind, including mental structures and procedures. In contrast, a

practice is an everyday activity, carried out in a socially meaningful context in
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which activity depends on communication and collaboration with others and

knowing how to use the resources that are available in the situation...

An important [philosophical and historical] example has been contributed

by Kitcher (1984). Kitcher's goal was to develop an epistemology of

mathematics. The key concept in his epistemology is an idea of a mathematical

practice, and mathematical knowledge is to be understood as knowledge of

mathematical practice. A mathematical practice includes understanding of the

language of mathematical practice, and the results that are currently accepted as

established. It also includes knowledge of the currently important questions in

the field, the methods of reasoning that are taken as valid ways of establishing

new results, and metamathematical views that include knowledge of general

goals of mathematical research and appreciation of criteria of significance and

elegance. (Greeno, 1989, pp. 24-25)

That is, "having a mathematical point of view" and "being a member of the

mathematical community" are central aspects of having mathematical knowledge.

Schoenfeld makes the case as follows.

I remember discussing with some colleagues, early in our careers, what it

was like to be a mathematician. Despite obvious individual differences, we had

all developed what might be called the mathematician's point of view -- a certain

way of thinking about mathematics, of its value, of how it is done, etc. What we

had picked up was much more than a set of skills; it was a way of viewing the

world, and our work. We came to realize that we had undergone a process of

acculturation, in which we had become members of, and had accepted the

values of, a particular community. As the result of a protracted apprenticeship

into mathematics, we had become mathematicians in a deep sense (by dint of

world view) as well as by definition (what we were trained in, and did for a living).

(Schoenfeld, 1987, p. 213)

The epistemological perspective discussed here dovetails closely with with the

"enculturation" perspective discussed earlier in this chapter. Recall Resnick's (1989)

observation that "becoming a good mathematical problem solver -- becoming a good

thinker in any domain -- may be as much a matter of acquiring the habits and

dispositions of interpretation and sense-making as of acquiring any particular set of

skills, strategies, or knowledge." The critical observation in both the mathematical and
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the school contexts is that one develops one's point of view by the process of

acculturation, by becoming a member of the particular community of practice.

Goals for instruction, and a pedagogical imperative

For the past few years the Mathematical Association of America's Committee on

the Teaching of Undergraduate Mathematics (forthcoming) has worked on compiling a

Source book for college mathematic teaching. The Source book begins with a

statement of goals for instruction, which seem appropriate for discussion here.

Goals for Mathematics Instruction

Mathematics instruction should provide students with a sense of the discipline --

a sense of its scope, power, uses, and history. It should give them a sense of

what mathematics is and how it is done, at a level appropriate for the students to

experience and understand. As a result of their instructional experiences,

students should learn to value mathematics and to feel confident in their ability to

do mathematics.

Mathematics instruction should develop students' understanding of important

concepts in the appropriate core content (see Curriculum Recommendations from

the MAA, below). Instruction should be aimed at conceptual understanding

rather than at mere mechanical skills, and at developing in students the ability to

apply the subject matter they have studied with flexibility and resourcefulness.

Mathematics instruction should provide students the opportunity to explore a

broad range of problems and problem situations, ranging from exercises to open-

ended problems and exploratory situations. It should provide students with a

broad range of approaches and techniques (ranging from the straightforward

application of the appropriate algorithmic methods to the use of approximation

methods, various modeling techniques, and the use of heuristic problem solving

strategies) for dealing with such problems.

Mathematics instruction should help students to develop what might be called a

"mathematical point of view" -- a predilection to analyze and understand, to

perceive structure and structural relationships, to see how things fit together.

(Note that those connections may be either pure or applied.) It should help
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students develop their analytical skills, and the ability to reason in extended

chains of argument.

Mathematics instruction should help students to develop precision in both written

and oral presentation. It should help students learn to present their analyses in

clear and coherent arguments reflecting the mathematical style and

sophistication appropriate to their mathematical levels. Students should learn to

communicate with us and with each other, using the language of mathematics.

Mathematics instruction should help students develop the ability to read and use

text and other mathematical materials. It should prepare students to become, as

much as possible, independent learners, interpreters, and users of mathematics.

(Committee on the Teaching of Undergraduate Mathematics of the Mathematical

Association of America, forthcoming, p. 2)

In the light of the discussion from Everybody Counts, we would add the following

to the second goal: Mathematics instruction should help students develop mathematical

power, including the use of specific mathematical modes of thought which are both

versatile and powerful, including modeling, abstraction, optimization, logical analysis,

inference from data, and use of symbols.

If these are plausible goals for instruction, one must ask what kinds of instruction

might succeed at producing them. The literature reviewed in this part of the chapter, in

particular the literature on socialization and epistemology, produces what is in essence

a pedagogical imperative:

If one hopes for students to achieve the goals specified here -- in particular, to

develop the appropriate mathematical habits and dispositions of interpretation

and sense-making as well as the appropriately mathematical modes of thought --

then the communities of practice in which they learn mathematics must reflect

and support those ways of thinking. That is, classrooms must be communities in

which mathematical sense-making, of the kind we hope to have students

develop, is practiced.



Learning to think mathematically, Page 34

PART II: A FRAMEWORK FOR EXPLORING

MATHEMATICAL COGNITION

The Framework

Part I of this chapter focused on the mathematical enterprise -- what Everybody

Counts calls "doing" mathematics. Here we focus on the processes involved in thinking

mathematically, the psychological support structure for mathematical behavior. The

main focus of our discussion is on developments over the past quarter century. It would

seem short-sighted to ignore the past 2000 years of philosophy and psychology related

to mathematical thinking and problem solving, however. Thus we begin with a brief

historical introduction (see Peters, 1962, or Watson, 1978, for detail) to establish the

context for the discussion of contemporary work and explain why the focus, essentially

de novo, is on the past few decades. For ease of reference we refer to the enterprise

under the umbrella label "psychological studies," including contributions from

educational researchers, psychologists, social scientists, philosophers and cognitive

scientists, among others. General trends are discussed here, with details regarding

mathematical thinking given in the subsequent sections.

The roots of contemporary studies in thinking and learning can be traced to the

philosophical works of Plato and Aristotle. More directly, Descartes' (1952) Rules for

the direction of the mind can be seen as the direct antecedents of Pólya's (1945, 1954,

1981) prescriptive attempts at problem solving. However, the study of mind and its

workings did not turn into an empirical discipline until the late 19th century. The origins

of that discipline are usually traced to the opening of Wundt's laboratory in Leipzig,

Germany, in 1879. "Wundt was the first modern psychologist -- the first person to

conceive of experimental psychology as a science. ... The methodological prescriptive

allegiances of Wilhelm Wundt are similar to those of the physiologists from whom he

drew inspiration. ... [H]e subscribed to methodological objectivism in that he attempted

to quantify experience so that others could repeat his procedures... Since the

combination of introspection and experiment was the method of choice, Wundt fostered

empiricism" (Watson, 1978, p. 292). Wundt (1904) and colleagues employed the

methods of experimentation and introspection (self-reports of intellectual processes) to

gather data about the workings of mind. These methods may have gotten psychology

off to an empirical start but they soon led to difficulties: Members of different laboratories

reported different kinds of introspections (corresponding to the theories held in those
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laboratories), and there were significant problems with both reliability and replicability of

the research findings.

American psychology's origins at the the turn of the century were more

philosophical, tied to pragmatism and functionalism. William James is generally

considered the first major American psychologist, and his (1890) principles of

psychology as an exemplar of the American approach. James' student, E. L. Thorndike,

began with animal studies and moved to studies of human cognition. Thorndike's work,

in particular, had great impact on theories of mathematical cognition.

One of the major rationales for the teaching of mathematics, dating back to Plato,

was the notion of mental discipline. Simply put, the idea is that those who are good at

mathematics tend to be good thinkers; those who are trained in mathematics learn to be

good thinkers. As exercise and discipline train the body, the theory went, the mental

discipline associated with doing mathematics trains the mind, making one a better

thinker. Thorndike's work challenged this hypothesis. He offered experimental

evidence (Thorndike & Woodworth, 1901) that transfer of the type suggested by the

notion of mental discipline was minimal, and argued (Thorndike, 1924) that the benefits

attributed to the study of mathematics were correlational: students with better reasoning

skills tended to take mathematics courses. His research, based in animal and human

studies, put forth the "law of effect," which says in essence "you get good at what you

practice, and there isn't much transfer." His "law of exercise" gave details of the ways

(recency and frequency effects) learning took place as a function of practice. As Peters

(1963, p. 695) notes, "Few would object to the first, at any rate, of these two laws, as a

statement of a necessary condition of learning; it is when they come to be regarded as

sufficient conditions that uneasiness starts."

Unfortunately, that sufficiency criterion grew and held sway for quite some time.

On the continent, Wundt's introspectionist techniques were shown to be

methodologically unreliable, and the concept of mentalism came under increasing

attack. In Russia, Pavlov (1924) achieved stunning results with conditioned reflexes, his

experimental work requiring no concept of mind at all. Finally, mind, consciousness,

and all related phenomena were banished altogether by the behaviorists. John Watson

(1930) was the main exponent of the behaviorist stance, B. F. Skinner (1974) a zealous

adherent. The behaviorists were vehement in their attacks on mentalism, and provoked

equally strong counter-reactions.
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John Watson and other behaviorists led a fierce attack, not only on

introspectionism, also on any attempt to develop a theory of mental operations.

Psychology, according to the behaviorists, was to be entirely concerned with

external behavior and not to try to analyze the workings of the mind that underlay

this behavior:

Behaviorism claims that consciousness is neither a definite nor a usable

concept. The behaviorist, who has been trained always as an

experimentalist, holds further that belief in the existence of consciousness

goes back to the ancient days of superstition and magic. (Watson, 1930,

p. 2)

... The behaviorist began his own conception of the problem of

psychology by sweeping aside all medieval conceptions. He dropped from

his scientific vocabulary all subjective terms such as sensation,

perception, image, desire, purpose, and even thinking and emotion as

they were subjectively defined. (Watson, 1930, p. 5)

The behaviorist program and the issues it spawned all but eliminated any serious

research in cognitive psychology for 40 years. The rat supplanted the human as

the principal laboratory subject, and psychology turned to finding out what could

be learned by studying animal learning and motivation. (Anderson, 1985, p. 7).

While behaviorism held center stage, alternate perspectives were in the wings.

Piaget's work (e.g. Piaget, 1928, 1930, 1971), while rejected by his American

contemporaries as being unrigorous, established the basis for the "constructivist

perspective," the now well established position that individuals do not perceive the world

directly, but that they perceive interpretations of it, interpretations mediated by the

interpretive frameworks they have developed. The Gestaltists, particularly Duncker,

Hadamard, and Wertheimer, were interested in higher order thinking and problem

solving. 1945 was a banner year for the Gestaltists. Duncker's monograph On

Problem Solving appeared in English, as did Hadamard's Essay on the psychology of

invention in the mathematical field (which provides a detailed exegesis of Poincare's

(1913) description of his discovery of the structure of Fuchsian functions), and

Wertheimer's Productive Thinking, which includes Wertheimer's famous discussion of

the "parallelogram problem" and an interview with Einstein on the origins of relativity

theory. These works all continued the spirit of Graham Wallas' (1926) The art of
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thought, in which Wallas codified the four-step Gestalt model of problem solving:

saturation, incubation, inspiration, verification. The Gestaltists, especially Wertheimer,

were concerned with structure and deep understanding. Unfortunately their primary

methodological tool was introspection, and they were vulnerable to attack on the basis

of the methodology's lack of reliability and validity. (They were also vulnerable because

they had no plausible theory of mental mechanism, while the behaviorists could claim

that stimulus-response chains were modeled on neuronal connections.) To cap off

1945, Pólya's How to solve it -- compatible with the Gestaltists' work, but more

prescriptive, à la Descartes, in flavor -- appeared as well.

The downfall of behaviorism and the renewed advent of mentalism, in the form of

the information processing approach to cognition, began in the mid-1950's. (See Newell

& Simon, 1972, pages 873 ff. for detail.) The development of artificial intelligence

programs to solve problems, e.g. Newell & Simon's (1972) "General Problem Solver,"

hoist the behaviorists by their own petard.

The simulation models of the 1950s were offspring of the marriage

between ideas that had emerged from symbolic logic and cybernetics, on the one

hand, and Würzburg and Gestalt psychology, on the other. From logic and

cybernetics was inherited the idea that information transformation and

transmission can be described in terms of the behavior of formally described

symbol manipulation systems. From Würzburg and Gestalt psychology were

inherited the ideas that long-term memory is an organization of directed

associations and that problem solving is a process of directed goal-oriented

search. (Simon, 1979, pp. 364-5)

Note that the information processing work discussed by Simon met the

behaviorists' standards in an absolutely incontrovertible way: Problem solving programs

(simulation models, artificial intelligence programs) produced problem solving behavior,

and all the workings of the program were out in the open for inspection. At the same

time, the theories and methodologies of the information processing school were

fundamentally mentalistic -- grounded in the theories of mentalistic psychology, and

using observations of humans engaged in problem solving to infer the structure of their

(mental) problem solving strategies. Though it took some time -- it was at least a

decade before such work had an impact on mainstream experimental psychology

(Simon, 1979), and as late as 1980 Simon and colleagues (Ericsson & Simon, 1980)

were writing review articles hoping to "legitimize" the use of out loud problem solving
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protocols -- an emphasis on cognitive processes emerged, stabilized, and began to

predominate in psychological studies of mind.

Early work in the information processing (IP) tradition was extremely narrow in

focus, partly because of the wish to have clean, scientific results: For many, the only

acceptable test of a theory was a running computer program that did what its author

said it should. Early IP work often focused on puzzle domains (e.g. the Tower of Hanoi

problem and its analogues), with the rationale that in such simple domains one could

focus on the development of strategies, and then later move to "semantically rich"

domains. As the tools were developed, studies moved from puzzles and games (e.,g.

logic, cryptarithmetic, and chess) to more open-ended tasks, focusing on textbook

tasks in domains such as physics and mathematics (and later, in developing expert

systems in medical diagnosis, mass spectroscopy, etc.). Nonetheless, work in the IP

tradition remained quite narrow for some time. The focus was on the "architecture of

cognition" (and machines): the structure of memory, of knowledge representations,

knowledge retrieval mechanisms, and of problem solving rules.

During the same time period (the first paper on metamemory by Flavell,

Friedrichs, and Hoyt appeared in 1970; the topic peaked in the mid-to-late 1980's)

"metacognition" became a major research topic. Here too, the literature is quite

confused. In an early paper, Flavell characterized the term as follows:

Metacognition refers to one's knowledge concerning one's own cognitive

processes or anything related to them, e.g. the learning-relevant properties of

information or data. For example, I am engaging in metacognition... if I notice

that I am having more trouble learning A than B; if it strikes me that I should

double-check C before accepting it as a fact; if it occurs to me that I should

scrutinize each and every alternative in a multiple-choice task before deciding

which is the best one.... Metacognition refers, among other things, to the active

monitoring and consequent regulation and orchestration of those processes in

relation to the cognitive objects or data on which they bear, usually in the service

of some concrete [problem solving] goal or objective. (Flavell, 1976, p. 232)

This kitchen-sink definition includes a number of categories which have since

been separated into more functional categories for exploration: (a) individuals'

declarative knowledge about their cognitive processes, (b) self-regulatory procedures,
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including monitoring and "on-line" decision-making, (c) beliefs and affects3, and their

effects on performance. These subcategories are considered in the framework

elaborated below.

Finally, the tail end of the 1980's saw a potential unification of aspects of what

might be called the cognitive and social perspectives on human behavior, in the theme

of enculturation. The minimalist version of this perspective is that learning is a social

act, taking place in a social context; that one must consider learning environments as

cultural contexts, and learning as a cultural act. (The maximal version, yet to be

realized theoretically, is a unification that allows one to see what goes on "inside the

individual head," and "distributed cognition," as aspects of the same thing.) Motivated

by Lave's (1988, in preparation) work on apprenticeship, Collins, Brown and Newman

(1989) abstracted common elements from productive learning environments in reading

(Palincsar & Brown, 1984), writing (Scardamalia & Bereiter, 1983) and mathematics

(Schoenfeld, 1985a). Across the case studies they found a common, broad

conceptualization of domain knowledge which included the specifics of domain

knowledge, but also understanding of strategies and aspects of metacognitive behavior.

In addition, they found that all three programs had aspects of "the culture of expert

practice," in that the environments were designed to take advantage of social

interactions to have students experience the gestalt of the discipline in ways

comparable to the ways that practitioners do.

In general, research in mathematics education followed a similar progression of

ideas and methodologies. Through the 1960's and 70's, correlational, factor-analytic

and statistical "treatment A vs. treatment B" comparison studies predominated in the

"scientific" study of thinking, learning, and problem solving. By the mid-1970's,

however, researchers expressed frustration at the limitations of the kinds of

contributions that could, in principle, be made by such studies of mathematical behavior.

For example, Kilpatrick (1978) compared the research methods prevalent in the United

States at the time with the kinds of qualitative research being done in the Soviet Union

3Through the early 1980's, the cognitive and affective literatures were separate and
unequal. The mid-1980's saw a rapprochement, with the notion of beliefs extending
the scope of the cognitive inquiries to be at least compatible with those of the affective
domain. Since then, the "enculturation" perspective discussed in Part I has moved the
two a bit closer.
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by Krutetskii (1976) and his colleagues. The American research, he claimed, was

"rigorous" but somewhat sterile: in the search for experimental rigor, researchers had

lost touch with truly meaningful mathematical behavior. In contrast, the soviet studies of

mathematical abilities were decidedly unrigorous, if not unscientific -- but they focused

on behavior and abilities that had face validity as important aspects of mathematical

thinking. Kilpatrick suggested that the research community might do well to broaden the

scope of its inquiries and methods.

Indeed, researchers in mathematics education turned increasingly to "process-

oriented" studies in the late 1970's and 1980's. Much of the process-oriented research

was influenced by the trends in psychological work described above, but it also had its

own special character. As noted above, psychological research tended to focus on

"cognitive architecture:" studies of the structure of memory, of representations, etc.

From a psychological point of view, mathematical tasks were attractive as settings for

such research because of their (ostensibly) formal, context-independent nature. That is,

topics from literature or history might be "contaminated" by real-world knowledge, a fact

that would make it difficult to control precisely what students brought to, or learned in,

experimental settings. But purely formal topics from mathematics (e.g. the algorithm for

base 10 addition and subtraction, or the rules for solving linear equations in one

variable) could be taught as purely formal manipulations, and thus one could avoid the

difficulties of "contamination." In an early information processing study of problem

solving, for example, Newell and Simon (1972) analyzed the behavior of students

solving problems in symbolic logic. From their observations, they abstracted successful

patterns of symbol manipulation and wrote them as computer programs. However,

Newell and Simon's sample explicitly excluded any subjects who knew the meanings of
the symbols (e.g. that "P � Q" means "if P is true, then Q is true"), because their goal

was to find productive modes of symbol manipulation without understanding -- since the

computer programs they intended to write wouldn't be able to reason on the basis of

those meanings. That is, their goal was to find successful symbol manipulations without

understanding. In contrast, of course, the "bottom line" for most mathematics educators

is to have students develop an understanding of the procedures and their meanings.

Hence the IP work took on a somewhat different character when adapted for the

purposes of mathematics educators.

The state of the art in the early and late 1980's respectively can be seen in two

excellent summary volumes, Silver's (1985) Teaching and learning mathematical
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problem solving: Multiple research perspectives and Charles and Silver's (1988) The

teaching and assessing of mathematical problem solving. Silver's volume was derived

from a conference held in 1983, which brought together researchers from numerous

disciplines to discuss results and directions for research in problem solving. Some

confusion, a great deal of diversity, and a flowering of potentially valuable perspectives

are evident in the volume. There was confusion, for example, about baseline definitions

of "problem solving." Kilpatrick (1985), for example, gave a range of definitions and

examples that covered the spectrum discussed in Part I of this chapter. And either

explicitly or implicitly, that range of definitions was exemplified in the chapters of the

book. At one end of the spectrum, Carpenter (1985) began his chapter with a

discussion of the following problem: "James had 13 marbles. He lost 8 of them. How

many marbles does he have left?" Carpenter notes that "such problems frequently are

not included in discussions of problem solving because they can be solved by the

routine application of a single arithmetic operation. A central premise of this paper is

that the solutions of these problems, particularly the solutions of young children, do in

fact involve real problem solving behavior" (page 17). Heller and Hungate (1985)

implicitly take their definition of "problem solving" to mean "being able to solve the

exercises at the end of a standard textbook chapter," as does Mayer. At the other end

of the spectrum, "the fundamental importance of epistemological issues (e.g. beliefs,

conceptions, misconceptions) is reflected in the papers by Jim Kaput, Richard Lesh,

Alan Schoenfeld, and Mike Shaughnessy. (p. ix.)" Those chapters took a rather broad

view of problem solving and mathematical thinking. Similarly, the chapters reveal a

great diversity of methods and their productive application to issues related to problem

solving. Carpenter's chapter presents detailed cross-sectional data on children's use of

various strategies for solving word problems of the type discussed above. Heller and

Hungate worked within the "expert-novice" paradigm for identifying the productive

behavior of competent problem solvers and using such behavior as a guide for

instruction for novices. Mayer discussed the application of schema theory, again within

the expert-novice paradigm. Kaput discussed fundamental issues of representation and

their role in understanding, Shaughnessy misconceptions, Schoenfeld the roles of

metacognition and beliefs. Alba Thompson (1985) studied teacher beliefs and their

effects on instruction. And so on, with great diversity. There was similar diversity in

methodology: experimental methods, expert-novice studies, clinical interviews, protocol

analyses, and classroom observations among others. The field had clearly flowered,

and there was a wide range of new work.



Learning to think mathematically, Page 42

The Charles and Silver volume (1988) reflects a maturing of the field, and

continued progress. By the end of the decade most of the methodologies and

perspectives tentatively explored in the Silver volume had been explored at some

length, with the result that they had been contextualized in terms of just what they could

offer in terms of explaining mathematical thinking. For example, the role of information

processing approaches and the expert-novice paradigm could be seen as providing

certain kinds of information about the organization and growth of individual knowledge --

but also as illuminating only one aspect of a much larger and more complex set of

issues. With more of the methodological tools in place, it became possible to take a

broad view once again -- focusing, for example, on history (the Stanic and Kilpatrick

chapter discussed above) and epistemology as grounding contexts for explorations into

mathematical thinking. In the Charles and Silver volume one sees the theme of social

interactions and enculturation emerging as central concerns, while in the earlier Silver

volume such themes were noted but put aside as "things we aren't really ready to deal

with." What one sees is the evolution of overarching frameworks, such as cognitive

apprenticeship, that deal with individual learning in a social context. That social theme

is explored in the work of Greeno (1989), Lave, Smith & Butler (1989), and Resnick

(1989), among others. There is not at present anything resembling a coherent

explanatory frame -- that is, a principled explanation of how the varied aspects of

mathematical thinking and problem solving fit together. However, there does appear to

be an emerging consensus about the necessary scope of inquiries into mathematical

thinking and problem solving. Although the fine detail varies (e.g. Collins, Brown, &

Newman (1989) subsume the last two categories under a general discussion of

"culture;" Lester, Garofalo, & Kroll (1989) subsume problem solving strategies under the

knowledge base, while maintaining separate categories for belief and affect), there

appears to be general agreement on the importance of these five aspects of cognition:

• The knowledge base

• Problem solving strategies

• Monitoring and control

• Beliefs and affects

• Practices.

These five categories provide the framework employed in the balance of the review.

The knowledge base



Learning to think mathematically, Page 43

Research on human cognitive processes over the past quarter century has

focused on the organization of, and access to, information contained in memory. In the

crudest terms, the underlying issues have been: how is information organized and

stored in the head; what comprises understanding; and how do individuals have access

to relevant information? The mainstream idea is that humans are information

processors, and that in their minds humans construct symbolic representations of the

world. According to this view, thinking about and acting in the world consist respectively

of operating mentally on those representations, and taking actions externally that

correspond to the results of our minds' internal workings. While these are the

mainstream positions -- and the ones elaborated below -- it should be noted that all of

them are controversial. There is, for example, a theoretical stance regarding distributed

cognition (Pea, 1989) which argues that it is inappropriate to locate knowledge "in the

head" -- that knowledge resides in communities and their artifacts, and in interactions

between individuals and their environments (which include other people). The related

concept of situated cognition (see, e.g., Barwise & Perry, 1983; Brown, Collins, &

Duguid, 1989; Lave & Wenger, 1989) is based on the underlying assumption that

mental representations are not complete and that thinking exploits the features of the

world in which one is embedded, rather than operating of abstractions of it. Moreover,

even if one accepts the notion of internal cognitive representation, there are multiple

perspectives regarding the nature and function of representations (See, e.g., Janvier,

1987, for a collection of papers regarding perspectives on representations in

mathematical thinking. For a detailed elaboration of such issues within the domain of

algebra, see Wagner & Kieran, 1989, especially the chapter by Kaput), or what

"understanding" might be. (For a detailed elaboration of such themes with regard to

elementary mathematics, see Putnam, Lampert, & Peterson, 1989.) Hence the sequel

presents what might be considered "largely agreed upon" perspectives.

Suppose a person finds him or herself in a situation that calls for the use of

mathematics, either for purposes of interpretation (mathematizing) or problem solving.

In order to understand the individual's behavior -- e.g. which options are pursued, in

which ways -- one needs to know what mathematical tools the individual has at his or

her disposal. Simply put, the issues related to the individual's knowledge base are:

What information relevant to the mathematical situation or problem at hand does he or

she possess, and how is that information accessed and used?
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Although these two questions appear closely related they are, in a sense, almost

independent. By way of analogy, consider the parallel questions with regard to the

contents of a library: What's in it, and how do you gain access to the contents? The

answer to the first question is contained in the catalogue: a list of books, records, tapes,

and other things the library possesses. It's the contents that interest you if you have a

particular problem, or need particular resources. How the books get catalogued, or how

you gain access to them, is somewhat irrelevant (especially if the ones you want aren't

in the catalogue). On the other hand, once you are interested in finding and using

something listed in the catalogue, the situation changes. How the library actually works

becomes critically important: Procedures for locating a book on the shelves, taking it to

the desk, and checking it out must be understood. Note, incidentally, that these

procedures are largely independent of the contents of the library. One would follow the

same set of procedures for accessing any two books in the general collection.

The same holds for assessing the knowledge base an individual brings to a

problem solving situation. In analyses of problem solving performance, for example, the

central issues most frequently deal with what individuals know (the contents of

memory), and how that knowledge is deployed. In assessing decision-making during

problem solving, for instance, one needs to know what options problem solvers had

available. Did they fail to pursue particular options because they overlooked them, or

because they didn't know of their existence? In the former case the difficulty might be

metacognitive, or of not seeing the right "connections;" in the latter case, it is a matter of

not having the right tools. From the point of view of the observer or experimenter trying

to understand problem solving behavior, then, a major task is the delineation of the

knowledge base of individuals who confront the given problem solving tasks. It is

important to note that in this context, that knowledge base may contain things that are

not true. Individuals bring misconceptions and misremembered facts to problem

situations, and it is essential to understand that those are the tools they work with.
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The knowledge inventory (memory contents)

Broadly speaking, aspects of the knowledge base relevant for competent

performance in a domain include: informal and intuitive knowledge about the domain;

facts, definitions, and the like; algorithmic procedures; routine procedures; relevant

competencies; and knowledge about the rules of discourse in the domain.4 Consider,

for example, the resources an individual might bring to the following problem.

P

Your are given two intersecting straight lines and a point P 
marked on one of them, as in the figure below.  Show how to 
construct, using straightedge and compass, a circle that is 
tangent to both lines and that has the point P as its point of 
tangency to one of the lines.

Problem

Informal knowledge an individual might bring to the problem includes general

intuitions about circles and tangents, and notions about "fitting tightly" that correspond to

tangency. It also includes perceptual biases, such as a strong predilection to observe

the symmetry between the points of tangency on the two lines. (This particular feature

tends to become less salient, and ultimately negligible, as the vertex angle is made

larger.) Of course, Euclidean geometry is a formal game; these informal

understandings must be exploited within the context of the rules for constructions. As

noted above, the facts, definitions, and algorithmic procedures the individual brings to

the problem situation may or may not be correct; they may be held with any degree of

confidence from absolute (but possibly incorrect) certainty to great unsureness. Part of

this aspect of the knowledge inventory is outlined in Table 1.

4This discussion is abstracted from pages 54-61 of Schoenfeld, 1985a.
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Part of the Inventory of an Individual's Resources for working the Construction Problem

Degree of Knowledge of facts and procedures

Does the student:

a. know nothing about
b. know about the 

existence of, but
    nothing about the
    details of
c. partially recall or

suspect the details,
    but with little certainty
d. confiently believe

The tangent to a circle is 
   perpendicular to the radius 
   drawn to the point of 
   tangency (true)
Any two constructible loci
   suffice to determine the 
   location of a point (true with 

qualifications)
The center of an inscribed 
   circle in a triangle lies at 
   the intersection of the 
   medians (false)

A (correct) procedure  for 
   bisecting an angle
A (correct) procedure for
    dropping a perpendicular
   to a line from a point 
An (incorrect) procedure for
    erecting a perpendicular 
    to a line through a given
    point on that line

Table 1

Routine procedures and relevant competencies differ from facts, definitions, and

algorithmic procedures in that they are somewhat less cut-and-dried. Facts are right or

wrong, and algorithms, when applied correctly, are guaranteed to work; routine

procedures are likely to work, but with no guarantees. For example, the problem above,

although stated as a construction problem, is intimately tied to a proof problem. One

needs to know what properties the desired circle has, and the most direct way of

determining them is to prove that in a figure including the circle (see Figure 1), PV and

QV are the same length, and CV bisects angle PVQ.

P

Q

C V

Figure 1. The desired configuration

The relevant proof techniques are not algorithmic, but they are somewhat routine.

People experienced in the domain know that one should to seek congruent triangles,

and that it is appropriate to draw in the line segments CV, CP and CQ; moreover, that

one of the standard methods for proving triangles congruent (SSS, ASA, AAS, or

hypotenuse-leg) will probably be used, and that this knowledge should drive the search

process. We note that all of the comments made in the discussion of Table 1 regarding
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the correctness of resources, and the degree of certainty with which they are held, apply

to relevant procedures and routine competencies: What "counts" is what the individual

holds to be true. Finally, we note the importance of understanding the rules of

discourse in the domain. As noted above, Euclidean geometry is a formal game; one

has to play by certain rules. For example, you can't "line up" a tangent by eye, or

determine the diameter of a circle by sliding a ruler along until you get the largest chord.

While such procedures may produce the right values empirically, they are proscribed in

the formal domain. People who understand this will behave very differently from those

who don't.

Access to resources (the structure of memory)

We now turn to the issue of how the contents of memory are organized,

accessed, and processed. Figure 2, taken from Silver (1987), provides the overarching

structure for the discussion. See Norman (1970) or Anderson (1983) for general

discussions.

MATH

KNOWLEDGE

META-

COGNITIVE

KNOWLEDGE

Beliefs

about:

-math

-self

REAL-

WORLD

KNOWLEDGE

LONG-TERM

MEMORY

META-

LEVEL

PROCESSES:

-planning

-monitoring

-evaluation

MENTAL

REPRESEN-

TATIONS

WORKING

M E M O R Y

STIMULI

-visual

-auditory

-tactile

SENSORY

BUFFERPROBLEM

T A S K

ENVIRONMENT

OUTPUT

Figure 2
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Here, in brief, are some of the main issues brought to center stage by Figure 2.

First is the notion that human beings are information processors, acting on the basis of

their coding of stimuli experienced in the world. That is, one's experiences -- visual,

auditory, tactile -- are registered in sensory buffers and then (if they are not ignored)

converted into the forms in which they are employed in working and long-term memory.

The sensory buffer (also called iconic memory, for much of its content is in the forms of

images) can register a great deal of information, but hold it only briefly. Some of that

information will be lost, other of it transmitted to working memory (You can take in a

broad scene perceptually, but only reproduce a small percentage of it.). Speaking

loosely, working or short-term memory is where "thinking gets done." Working memory

receives its contents from two sources, the sensory buffer and long-term memory.

The most important aspect of working or short-term memory (STM) is its limited

capacity. Pioneering research by Miller (1956) indicated that, despite the huge amount

of information humans can remember in general, they can only keep about seven

"chunks" of information in short-term memory, and operate on them. For example, the

reader, unless specially trained, will find it nearly impossible to find the product 637 and

829 mentally; the number of subtotals one must keep track of is too large for STM to

hold. In this arithmetic example, the pieces of information in STM are relatively simple.

Each of the 7±2 chunks in STM can, however, be quite complex: As Simon (1980)

points out,

A chunk is any perceptual configuration (visual, auditory, or what not) that

is familiar and recognizable. For those of us who know the English language,

spoken and printed words are chunks... For a person educated in Japanese

schools, any one of several thousand Chinese ideograms is a single chunk (and

not just a complex collection of lines and squiggles), and even many pairs of

such ideograms constitute single chunks. For an experienced chess player, a

"fianchettoed castled Black King's position" is a chunk, describing the respective

locations of six or seven of the Black pieces (Simon, 1980, p. 83)

In short, the architecture of STM imposes severe constraints on the kinds and

amount of mental processing people can perform. The operation of chunking -- by

which one can have compound entities in the STM slots -- only eases the constraints

somewhat. "Working memory load" is indeed a serious problem, when people have to

keep multiple ideas in mind during problem solving. It also suggests that for "knowledge

rich" domains -- chess a generic example (see below), but mathematics certainly one as
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well -- there are severe limitations to the amount of "thinking things out" that one can do;

the contents of the knowledge base are critically important.

Long term memory (LTM) is an individual's permanent knowledge repository.

Details of its workings are still very much open to question and too fine-grained for this

discussion, but a general consensus appears to be that some sort of "neural network"

representation, graphs whose vertices (nodes) represent chunks in memory and whose

links represent connections between those chunks, is appropriate. Independent of

these architectural issues, the fundamental issues have to do with the nature of

knowledge and the organization of knowledge for access (i.e., to be brought into STM)

and use.

Before turning to issues of organization and access, one should note a long-

standing distinction between two types of knowledge, characterized by Ryle (1949)

respectively as "knowing that" and "knowing how." More modern terminology, employed

by Anderson (1976), is that of "declarative" and "procedural" knowledge respectively.

The relationship between the two is not clear-cut; see Hiebert (1985) for a set of

contemporary studies exploring the connections between them.

One of the domains in which the contents of memory has been best elaborated is

chess. de Groot (1965) explored chess masters' competence, looking for explanations

such as "spatial ability" to explain their ability to "size up" a board rapidly and play

numerous simultaneous games of chess. He briefly showed experts and novices typical

midgame positions, and asked them to recreate the positions on nearby chess boards.

The masters' performance was nearly flawless, the novices’ quite poor. However, when

the two groups were asked to replicate positions where pieces had been randomly

placed on the chess boards, experts did no better than novices; and when they were

asked to replicate positions that were almost standard chess positions, the masters

often replicated the standard positions -- the ones they expected to see. That is, the

experts had "vocabularies" of chess positions, some 50,000 well-recognized

configurations, which they recognized and to which they responded automatically.

These vocabularies formed the base (but not the whole) of their competence.

The same, it is argued, holds in all domains, including mathematics. Depending

on the knowledge architecture invoked, the knowledge chunks may be referred to as

scripts (Schank & Abelson, 1977), frames (Minsky, 1975), or schemata (Hinsley, Hayes,

& Simon, 1977). Nonetheless, the basic underlying notion is the same: people abstract
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and codify their experiences, and the codifications of those experiences shape what

people see and how they behave when they encounter new situations related to the

ones they have abstracted and codified. The Hinsley, Hayes, & Simon study is generic

in that regard. In one part of their work, for example, they read the first few words of a

problem statement to subjects, and asked the subjects to categorize the problem: to say

what information the expected the problem to provide, and what they were likely to be

asked.

[A]fter hearing the three words "a river steamer' from a river current problem, one

subject said, "It's going to be one of those river things with upstream,

downstream, and still water. You are going to compare times upstream and

downstream -- or if the time is constant, it will be distance." ...After hearing five

words of a triangle problem, one subject said, "this may be something about 'how

far is he from his goal' using the Pythagorean theorem." (Hinsley et al., 1977, p.

97).

The Hinsley, Hayes, and Simon findings were summed up as follows.

(1) People can categorize problems into types...

(2) People can categorize problems without completely formulating them for

solution. If the category is to be used to cue a schema for formulating a

problem, the schema must be retrieved before formulation is complete.

(3) People have a body of information about each problem type which is

potentially useful in formulating problems of that type for solutions... directing

attention to important problem elements, making relevance judgments,

retrieving information concerning relevant equations, etc.

(4) People use category identifications to formulate problems in the course of

actually solving them. (Hinsley et al., 1977, p. 92).

In sum, the findings of work in domains such as chess and mathematics point

strongly to the importance and influence of the knowledge base. First, it is argued that

expertise in various domains depends of having access to some 50,000 chunks of

knowledge in LTM. Since it takes some time (perhaps 10 seconds of rehearsal for the

simplest items) for each chunk to become embedded in LTM, and longer for knowledge

connections to be made, that is one reason expertise takes as long as it does to
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develop. Second, a lot of what appears to be strategy use is in fact reliance on well-

developed knowledge chunks of the type "in this well-recognized situation, do the

following." Nonetheless, it is important not to overplay the roles of these knowledge

schemata, for they do play the role of vocabulary -- the basis for routine performance in

familiar territory. Chess players, when playing at the limit of their own abilities, do rely

automatically on their vocabularies of chess positions, but also do significant

strategizing. Similarly, mathematicians have immediate access to large amounts of

knowledge, but also employ a wide range of strategies when confronted with problems

beyond the routine (and those, of course, are the problems mathematicians care about.)

However, the straightforward suggestion that mathematics instruction focus on problem

schemata does not sit well with the mathematics education community, for good reason.

As noted in the historical review, IP work has tended to focus on performance but not

necessarily on the underlying understandings that support it. Hence a reliance on

schemata in crude form -- "when you see these features in a problem, use this

procedure" -- may produce surface manifestations of competent behavior. However,

that performance may, if not grounded in an understanding of the principles that led to

the procedure, be error-prone and easily forgotten. Thus many educators would

suggest caution when applying research findings from schema theory. For an

elaboration of the underlying psychological ideas and the reaction from mathematics

education, see the papers by Mayer (1985) and Sowder (1985).

Problem solving strategies (heuristics)

Discussions of problem solving strategies in mathematics, or heuristics, must

begin with Pólya. Simply put, How to Solve It (1945) planted the seeds of the problem

solving "movement" that flowered in the 1980's: Open the 1980 NCTM yearbook

(Krulik, 1980) randomly, and you are likely to find Pólya invoked, either directly or by

inference in the discussion of problem solving examples. The Yearbook begins by

reproducing the How to Solve it problem solving plan on its fly leaf, and continues with

numerous discussions of how to implement Pólya-like strategies in the classroom. Nor

has Pólya's influence been limited to mathematics education. A cursory literature

review found his work on problem solving cited in American Political Science Review,

Annual Review of Psychology, Artificial Intelligence, Computers and Chemistry,

Computers and Education, Discourse Processes, Educational Leadership, Higher

Education, and Human Learning, to name just a few. Nonetheless, a close examination

reveals that while his name is frequently invoked, his ideas are often trivialized. Little
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that goes in the name of Pólya also goes in the spirit of his work. Here we briefly follow

two tracks: research exploring the efficacy of heuristics, or problem solving strategies,

and the "real world" implementation of problem solving instruction.

Making heuristics work

The scientific status of heuristic strategies such as those discussed by Pólya in

How to Solve It -- strategies in his "short dictionary of heuristic" such as (exploiting)

analogy, auxiliary elements, decomposing and recombining, induction, specialization,

variation, working backwards -- has been problematic, although the evidence appears to

have turned in Pólya's favor over the past decade.

There is no doubt that Pólya's accounts of problem solving have face validity, in

that they ring true to people with mathematical sophistication. Nonetheless, through the

1970's there was little empirical evidence to back up the sense that heuristics could be

used as vehicles to enhanced problem solving. For example, Wilson (1967) and Smith

(1973) found that the heuristics that students were taught did not, despite their

ostensible generality, transfer to new domains. Studies of problem solving behaviors by

Kantowski (1977), Kilpatrick (1967), and Lucas (1974) did indicate that students' use of

heuristic strategies was positively correlated with performance on ability tests, and on

specially constructed problem solving tests; however, the effects were relatively small.

Harvey and Romberg (1980), in a compilation of dissertation studies in problem solving

over the 1970's, indicated that the teaching of problem solving strategies was

"promising" but had yet to pan out. Begle (1979, pp. 145-146) have the following

pessimistic assessment of the state of the art as of 1979:

A substantial amount of effort has gone into attempts to find out what

strategies students use in attempting to solve mathematical problems... No clear-

cut directions for mathematics education are provided by the findings of these

studies. In fact, there are enough indications that problem solving strategies are

both problem- and student-specific often enough to suggest that finding one (or

few) strategies which should be taught to all (or most) students are far too

simplistic.

In other fields such as artificial intelligence, where significant attention was given

to heuristic strategies, strategies of the type described by Pólya were generally ignored
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(see, e.g., Groner, Groner & Bischof, 1983; Simon, 1980). Newell, in summing up

Pólya's influence, states the case as follows.

This chapter is an inquiry into the relationship of George Polya's work on

heuristic to the field of artificial intelligence (hereafter, AI). A neat phrasing of its

theme would be Polya revered and Polya ignored. Polya revered, because he is

recognized in AI as the person who put heuristic back on the map of intellectual

concerns. But Polya ignored, because noone in AI has seriously built on his

work....

Everyone in AI, at least that part within hailing distance of problem solving

and general reasoning, knows about Polya. They take his ideas as provocative

and wise. As Minsky (1961) states, "And everyone should know the work of

Polya on how to solve problems." But they also see his work as being too

informal to build upon. Hunt (1975) has said "Analogical reasoning is potentially

a very powerful device. In fact, Polya [1954] devoted one entire volume of his

two volume work to the discussion of the use of analogy and induction in

mathematics. Unfortunately, he presents ad hoc examples but no general rules.

[p. 221]."

The 1980's have been kinder to heuristics à la Pólya. In short, the critique of the

strategies listed in How to Solve It and its successors is that the characterizations of

them were descriptive rather than prescriptive. That is, the characterizations allowed

one to recognize the strategies when they were being used. However, Pólya's

characterizations did not provide the amount of detail that would enable people who

were not already familiar with the strategies to be able to implement them. Consider, for

example, an ostensibly simple strategy such as "examining special cases5:"

To better understand an unfamiliar problem, you may wish to exemplify the

problem by considering various special cases. This may suggest the direction of,

of perhaps the plausibility of, a solution.

Now consider the solutions to the following three problems.

5This discussion is taken from pp. 288-290 of Schoenfeld (1987, December).
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Problem 1. Determine a formula in closed form for the series

n

� k/(k+1)!
i=1

Problem 2. Let P(x) and Q(x) be polynomials whose coefficients are the same

but in "backwards order:"

P(x) = a0 + a1x + a2x2 + ... anxn , and

Q(x) = an + an-1x + an-2x2 + ... a0xn.

What is the relationship between the roots of P(x) and Q(x)? Prove your

answer.

Problem 3. Let the real numbers a0 and a1 be given. Define the sequence {an}

by

an = 1/2 (an-2 + an-1) for each n � 2.

Does the sequence {an} converge? If so, to what value?

Details of the solutions will not be given here. However, the following

observations are important. For problem 1, the special cases that help are examining

what happens when where the integer parameter, n, takes on the values 1, 2, 3, . . . in

sequence; this suggests a general pattern that can be confirmed by induction. Yet trying

to use special cases in the same way on the second problem may get one into trouble:

Looking at values n = 1, 2, 3, . . . can lead to a wild goose chase. The "right" special

cases of P(x) and Q(x) to look at for problem 2 are easily factorable polynomials.

Considering P(x) = (2x + 1) (x + 4) (3x - 2), for example, leads to the discovery that its

"reverse" can be factored without difficulty. The roots of P and Q are easy to compare,

and the result (which is best proved another way) becomes obvious. And again, the

special cases that simplify the third problem are different in nature. Choosing the values
a0=0 and a1=1 allows one to see what happens for the sequence that those two values

generate. The pattern in that case suggests what happens in general, and (especially if

one draws the right picture!) leads to a solution of the original problem.
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Each of these problems typifies a large class of problems, and exemplifies a

different special cases strategy. We have:

Strategy 1. When dealing with problems in which an integer parameter n plays a

prominent role, it may be of use to examine values of n = 1, 2, 3, . . . in

sequence, in search of a pattern.

Strategy 2. When dealing with problems that concern the roots of polynomials, it

may be of use to look at easily factorable polynomials.

Strategy 3. When dealing with problems that concern sequences or series that

are constructed recursively, it may be of use to try initial values of 0 and 1 -- if

such choices don't destroy the generality of the processes under investigation.

Needless to say, these three strategies hardly exhaust "special cases." At this

level of analysis -- the level of analysis necessary for implementing the strategies -- one

could find a dozen more. This is the case for almost all of Pólya's strategies. The

indications are (see, e.g., Schoenfeld, 1985a) that students can learn to use these more

carefully delineated strategies.

Generally speaking, studies of comparable detail have yielded similar findings.

Silver (1979, 1981), for example, showed that "exploiting related problems" is much

more complex than it first appears. Heller and Hungate (1985), in discussing the

solution of (routine) problems in mathematics and science, indicate that attention to fine-

grained detail, of the type suggested in the AI work discussed by Newell (1983), does

allow for the delineation of learnable and usable problem solving strategies. Their

recommendations, derived from detailed studies of cognition: (a) Make tacit processes

explicit (b) get students talking about processes; (c) provide guided practice; (d) ensure

that component procedures are well learned; and (e) emphasize both qualitative

understanding and specific procedures, appear to apply well to heuristic strategies as

well as to the more routine techniques Heller and Hungate discuss. Similarly, Rissland's

(1985) "tutorial" on AI and mathematics education points to parallels, and to the kinds of

advances that can be made with detailed analyses of problem solving performance.

There now exists the base knowledge for the careful, prescriptive characterization of

problem solving strategies.

"Problem Solving" in school curricula
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In classroom practice, unfortunately, the rhetoric of problem solving has been

seen more frequently than its substance. The following are some summary statements

from the Dossey, Mullis, Lindquist, & Chambers, (1988) Mathematics report card.

Instruction in mathematics classes is characterized by teachers explaining

material, working problems at the board, and having students work mathematics

problems on their own -- a characterization that has not changed across the

eight-year period from 1978 to 1986.

Considering the prevalence of research suggesting that there may be

better ways for students to learn mathematics than listening to their teachers and

then practicing what they have heard in rote fashion, the rarity of innovative

approaches is a matter for true concern. Students need to learn to apply their

newly acquired mathematics skills by involvement in investigative situations, and

their responses indicate very few activities to engage in such activities. (Dossey

et al., 1988, p. 76).

According to the Mathematics report card, there is a predominance of textbooks,

workbooks, and ditto sheets in mathematics classrooms; lessons are generically of the

type Burkhardt (1988) calls the "exposition, examples, exercises" mode. Much the

same is true of lessons that are supposedly about problem solving. In virtually all

mainstream texts, "problem solving" is a separate activity and highlighted as such.

Problem solving is usually included in the texts in one of two ways. First, there may be

occasional "problem solving" problems sprinkled through the text (and delineated as

such), as rewards or recreations. The implicit message contained in this format is "You

may take a breather from the real business of doing mathematics, and enjoy yourself for

a while." Second, many texts contain "problem solving" sections in which students are

given drill-and-practice on simple versions of the strategies discussed in the previous

section. In generic textbook fashion, students are shown a strategy (say "finding

patterns" by trying values of n = 1,2,3,4 in sequence and guessing the result in general),

given practice exercises using the strategy, given homework using the strategy, and

tested on the strategy. Note that when the strategies are taught this way, they are no

longer heuristics in Pólya's sense; they are mere algorithms. Problem solving, in the

spirit of Pólya, is learning to grapple with new and unfamiliar tasks, when the relevant

solution methods (even if only partly mastered) are not known. When students are

drilled in solution procedures as described here, they are not developing the broad set
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of skills Pólya and other mathematicians who cherish mathematical thinking have in

mind.

Even with good materials (and more problem sources are becoming available:

see, e.g., Groves & Stacey, 1984; Mason, Burton, & Stacey, 1982; Shell Centre, 1984),

the task of teaching heuristics with the goal of developing the kinds of flexible skills

Pólya describes is a sometimes daunting task. As Burkhardt notes, teaching problem

solving is

harder for the teacher...

mathematically - the teachers must perceive the implications of the students'

different approaches, whether they may be fruitful and, if not, what might make

them so.

pedagogically - the teacher must decide when to intervene, and what

suggestions will help the students while leaving the solution essentially in their

hands, and carry this through for each student, or group of students, in the class.

personally - the teacher will often be in the position, unusual for mathematics

teachers and uncomfortable for many, of not knowing; to work well without

knowing all the answers requires experience, confidence, and self-awareness.

(Burkhardt, 1988, p. 18)

That is, true problem solving is as demanding on the teacher as it is on the

students -- and far more rewarding, when achieved, than the pale imitations of it in most

of today's curricula.

Self-regulation, or monitoring and control

Self-regulation or monitoring and control is one of three broad arenas

encompassed under the umbrella term metacognition. For a broad historical review of

the concept, see Brown (1987). In brief, the issue is one of resource allocation during

cognitive activity and problem solving. We introduce the notion with some generic

examples.

As you read some expository text, you may reach a point at which your

understanding becomes fuzzy; you decide to either reread the text or stop and work out

some illustrative examples to make sure you've gotten the point. In the midst of writing
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an article, you may notice that you've wandered from your intended outline. You may

scrap the past few paragraphs and return to the original outline, or you may decide to

modify it on the basis of what you've just written. Or, as you work a mathematical

problem you may realize that the problem is more complex than you had thought at first.

Perhaps the best thing to do is start over, and make sure that you've fully understood it.

Note that at this level of description, the actions in all three domains -- reading, writing,

and mathematics -- is much the same. In the midst of intellectual activity ("problem

solving," broadly construed), you kept tabs on how well things were going. If things

appeared to be proceeding well, you continued along the same path; if they appeared to

be problematic, you took stock and considered other options. Monitoring and assessing

progress "on line," and acting in response to the assessments of on-line progress, are

the core components of self-regulation.

During the 1970's, research in at least three different domains -- the

developmental literature, artificial intelligence, and mathematics education -- converged

on self-regulation as a topic of importance. In general, the developmental literature

shows that as children get older, they get better at planning for the tasks they are asked

to perform, and better at making corrective judgments in response to feedback from

their attempts. [Note: such findings are generally cross-sectional, comparing the

performance of groups of children at different age levels; studies rarely follow individual

students or cohort groups through time.] A mainstream example of such findings is

Karmiloff-Smith's (1979) study of children, ages four through nine, working on the task

of constructing a railroad track. The children were given pieces of cardboard

representing sections of a railroad track and told that they needed to put all of the

pieces together to make a complete loop, so that the train could go around their

completed track without ever leaving the track. They were rehearsed on the problem

conditions until it was clear that they knew all of the constraints they had to satisfy in

putting the tracks together. Typically the four- and five-year old children in the study

jumped right into the task, picking up sections of the track more or less at random and

lining them up in the order in which they picked them up. They showed no evidence of

systematic planning for the task, or execution of it. The older children in the study, ages

eight and nine, engaged in a large amount of planning before engaging in the task.

They sorted the track sections into piles (e.g. straight and curved track sections) and

chose systematically from the piles (e.g. alternating curved and straight sections, or two

straight and two curved in sequence) to build the track loops. They were, in general,

more effective and efficient at getting the task done. In short, the ability and predilection
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to plan, act according to plan, and take on line feedback into account in carrying out a

plan seem to develop with age.

Over roughly the same time period, researchers in artificial intelligence came to

recognize the necessity for "executive control" in their own work. As problem solving

programs (and expert systems) became increasingly complex, it became clear to

researchers in AI that "resource management" was an issue. Solutions to the resource

allocation problem varied widely, often dependent on the specifics of the domain in

which planning or problem solving was being done. Sacerdoti (1974), for example, was

concerned with the time sequence in which plans are executed -- an obvious concern if

you try to follow the instructions "put your socks and shoes on" or "paint the ladder and

paint the ceiling" in literal order. His architecture, NOAH (for Nets Of Action

Hierarchies), was designed to help make efficient planning decisions that would avoid

execution roadblocks. NOAH's plan execution was top-down, fleshing out plans from

the most general level downward, and only filling in specifics when necessary. Alternate

models, corresponding to different domains were bottom-up; and still others, most

notably the Hayes-Roths' (1979) "Opportunistic Planning model," or OPM, was

heterarchical -- somewhat top-down in approach, but also working at the local level

when appropriate. In many ways, the Hayes-Roths' work paralleled emerging work in

mathematical problem solving. The task they gave subjects was to prioritize and plan a

day's errands. Subjects were given a schematic map of a (hypothetical) city and list of

tasks that should, if possible, be achieved that day. The tasks ranged from trivial and

easily postponed (e.g. ordering a book) to essential (picking up medicine at the

druggist). There were too many tasks to be accomplished, so the problem solver had to

both prioritize the tasks and find reasonably efficient ways of sequencing and achieving

them. The following paragraph summarizes the Hayes-Roths' findings, and stands in

contrast to the generically clean and hierarchical models typifying the AI literature.

[P]eople's planning activity is largely opportunistic. That is, at each point in the

process, the planner's current decisions and observations suggest various

opportunities for plan development. The planner's subsequent decisions follow

up on selected opportunities. Sometimes these decision processes follow an

orderly path and produce a neat top-down expansion.... However, some

decisions and observations might suggest less orderly opportunities for plan

development. For example, a decision about how to conduct initial planned

activities might illuminate certain constraints on the planning of later activities and
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cause the planner to refocus attention on that phase of the plan. Similarly,

certain low-level refinements of a previous, abstract plan might suggest an

alternative abstract plan to replace the original one. (Hayes-Roth & Hayes-Roth,

1979, p. 276.)

Analogous findings were accumulating in the mathematics education literature.

In the early 1980's, Silver (1982) and Silver, Branca, and Adams (1980), and Garofalo

and Lester (1985) pointed out the usefulness of the construct for mathematics

educators; Lesh (1983, 1985) focused on the instability of students' conceptualizations

of problems and problem situations, and of the consequences of such difficulties.

Speaking loosely, all of these studies dealt with the same set of issues regarding

effective and resourceful problem solving behavior. Their results can be summed up as

follows: it's not just what you know; it's how, when, and whether you use it. Here we

focus on two sets of studies designed to help students develop self-regulatory skills

during mathematical problem solving. The studies were chosen for discussion because

of (a) the explicit focus on self-regulation in both (b) the amount of time each devoted to

helping students develop such skills, and (c) the detailed reflections on success and

failure in each.

Schoenfeld's (1985a, 1987) problem solving courses at the college level have as

one of their major goals the development of executive or control skills. Here is a brief

summary, adapted from Schoenfeld (1989d.)

The major issues are illustrated in Figures 3 and 4. Figure 3 shows the graph of

a problem solving attempt by a pair of working as a team. The students read the

problem, quickly chose an approach to it, and pursued that approach. They kept

working on it, despite clear evidence that they were not making progress, for the full

twenty minutes allocated for the problem session. At the end of the twenty minutes they

were asked how that approach would have helped them to solve the original problem.

They couldn't say.
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Fig. 3.  Time-line graph of a typical student attempt to 

             solve a non-standard problem.

The reader may not have seen this kind of behavior too often. Such behavior

does not generally appear when students work routine exercises, since the problem

context in that case tells the students which techniques to use. (In a unit test on

quadratic equations, for example, students know that they'll be using the quadratic

formula.) But when students are doing real problem solving, working on unfamiliar

problems out of context, such behavior more reflects the norm than not. In Schoenfeld's

collection of (more than a hundred) videotapes of college and high school students

working unfamiliar problems, roughly sixty percent of the solution attempts are of the

"read, make a decision quickly, and pursue that direction come hell or high water"

variety. And that first, quick, wrong decision, if not reconsidered and reversed,

guarantees failure.
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Fig. 4. Time-line graph of a mathematician working a

difficult problem

Figure 4, which stands in stark contrast to Figure 3, traces a mathematics faculty

member's attempt to solve a difficult two-part problem. The first thing to note is that the

mathematician spent more than half of his allotted time trying to make sense of the

problem. Rather than committing himself to any one particular direction, he did a

significant amount of analyzing and (structured) exploring -- not spending time in

unstructured exploration or moving into implementation until he was sure he was

working in the right direction. Second, each of the small inverted triangles in Figure 4

represents an explicit comment on the state of his problem solution, for example "Hmm.

I don't know exactly where to start here" (followed by two minutes of analyzing the

problem) or "OK. All I need to be able to do is [a particular technique] and I'm done"

(followed by the straightforward implementation of his problem solution). It is interesting

that when this faculty member began working the problem he had fewer of the facts and

procedures required to solve the problem readily accessible to him than did most of the

students who were recorded working the problem. And, as he worked through the

problem the mathematician generated enough potential wild goose chases to keep an

army of problem solvers busy. But he didn't get deflected by them. By monitoring his

solution with care -- pursuing interesting leads, and abandoning paths that didn't seem

to bear fruit -- he managed to solve the problem, while the vast majority of students did

not.

The general claim is that these two illustrations are relatively typical of adult

student and "expert" behavior on unfamiliar problems. For the most part, students are
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unaware of or fail to use the executive skills demonstrated by the expert. However, it is

the case that such skills such can be learned as a result of explicit instruction that

focuses on metacognitive aspects of mathematical thinking. That instruction takes the

form of "coaching," with active interventions as students work on problems.

Roughly a third of the time in Schoenfeld's problem solving classes is spent with

the students working problems in small groups. The class divides into groups of three

or four students and works on problems that have been distributed, while the instructor

circulates through the room as "roving consultant." As he moves through the room he

reserves the right to ask the following three questions at any time:

What (exactly) are you doing?

(Can you describe it precisely?)

Why are you doing it?

(How does it fit into the solution?)

How does it help you?

(What will you do with the outcome when you obtain it?)

He begins asking these questions early in the term. When he does so the

students are generally at a loss regarding how to answer them. With the recognition

that, despite their uncomfortableness, he is going to continue asking those questions,

the students begin to defend themselves against them by discussing the answers to

them in advance. By the end of the term this behavior has become habitual. (Note,

however, that the better part of a semester is necessary to obtain such changes.)

The results of these interventions are best illustrated in Fig. 5, which summarizes

a pair of students' problem attempt after the problem solving course. After reading the

problem they jumped into one solution attempt which, unfortunately, was based on an

unfounded assumption. They realized this a few minutes later, and decided to try

something else. That choice too was a bad one, and they got involved in complicated

computations that kept them occupied for eight and a half minutes. But at that point

they stopped once again. One of the students said "No, we aren't getting anything

here... [What we're doing isn't justified]... Let's start all over and forget about this." They

did, and found a solution in short order.
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Fig. 5. Time-line graph of two students working a

             problem after the problem solving course.

The students' solution is hardly expert-like in the standard sense, since they

found the "right" approach quite late in the problem session. Yet in many ways their

work resembled the mathematician's behavior illustrated in Fig. 4 far more than the

typical student behavior illustrated in Fig. 3. The point here is not that the students

managed to solve the problem, for to a significant degree solving non-standard

problems is a matter of luck and prior knowledge. The point is that, by virtue of good

self-regulation, the students gave themselves the opportunity to solve the problem.

They curtailed one possible wild goose chase shortly after beginning to work on the

problem, and truncated extensive computations half-way through the solution. Had they

failed to do so (and they and the majority of their peers did fail to do so prior to the

course), they never would have had the opportunity to pursue the correct solution they

did find. In this, the students' behavior was expert-like. And in this, their solution was

also typical of post-instruction attempts by the students. In contrast to the 60% of the

"jump into a solution attempt and pursue it no matter what" attempts prior to the course,

fewer than 20% of the post-instruction solution attempts were of that type. There was a

concomitant increase in problem solving success.

At the middle school level, Lester, Garofalo & Kroll (1989, June) recently

completed a major research and intervention study "designed to study the role of

metacognition (i.e. the knowledge and control of cognition) in seventh graders'

mathematical problem solving" (p. v). The goal of the instruction, which took place in

one "regular" and one "advanced" seventh grade mathematics class, was to foster
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students' metacognitive development. Ways of achieving this goal were to have the

teacher (a) serve as external monitor during problem solving, (b) encourage discussion

of behaviors considered important for the internalization of metacognitive skills, and (c)

model good executive behavior. Table 2 delineates the teacher behaviors stressed in

the instruction. The total instruction time focusing on metacognition in the experiment

was 16.1 hours spread over 12 weeks of instruction, averaging slightly more than 1/3

(35.7%) of the mathematics classroom time during the instructional period.

__________________________________________________________

Teaching actions for problem solving
__________________________________________________________

Teaching Action Purpose
BEFORE

1. Read the problem... Discuss words or Illustrate the importance of reading
phrases students may not understand carefully; focus on special vocabulary

2. Use whole-class discussion to focus on Focus on important data, clarification
importance of understanding the problem process

3. (Optional) Whole-class discussion of Elicit ideas for possible ways to solve
possible strategies to solve a problem the problem

DURING

4. Observe and question students to Diagnose strengths and weaknesses
determine where they are

5. Provide hints as needed Help students past blockages

6. Provide problem extensions as needed Challenge early finishers to generalize

7. Require students who obtain a solution Require students to look over their work
to "answer the question" and make sure it makes sense

AFTER

8. Show and discuss solutions Show and name different strategies

9. Relate to previously solved problems Demonstrate general applicability of
or have students solve extensions problem solving strategies

10. Discuss special features, e.g. pictures Show how features may influence approach
__________________________________________________________

Table 2 (Adapted from Lester, Garofalo, & Kroll, 1989, P. 26)
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The instruction included both "routine" and "non-routine" problems. An example

of a routine problem designed to give students experience in translating verbal

statements into mathematical expressions was as follows.

Laura and Beth started reading the same book on Monday. Laura read 19 pages

a day and Beth read 4 pages a day. What page was Beth on when Laura was on

page 133?

The non-routine problems used in the study included "process problems"

(problems for which there is no standard algorithm for extracting or representing the

given information) and problems with either superfluous or insufficient information. The

instruction focused on problems amenable to particular strategies (guess-and-check,

working backwards, looking for patters) and included games for whole-group activities.

Assessment data and tools employed before, during, and after the instruction included

written tests, clinical interviews, observations of individual and pair problem-solving

sessions, and videotapes of the classroom instruction. Some of the main conclusions

drawn by Lester et al. were as follows.

• There is a dynamic interaction between the mathematical concepts and

processes (including metacognitive ones) used to solve problems using those

concepts. That is, control processes and awareness of cognitive processes

develop concurrently with an understanding of mathematical concepts.

• In order for students' problem solving performance to improve, they must attempt

to solve a variety of types of problems on a regular basis and over a prolonged

period of time.

• Metacognition instruction is most effective when it takes place in a domain

specific context.

• Problem-solving instruction, metacognition instruction in particular, is likely to be

most effective when it is provided in a systematically organized manner under the

direction of the teacher.

• It is difficult for the teacher to maintain the roles of monitor, facilitator, and model

in the face of classroom reality, especially when the students are having trouble

with basic subject matter.
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• Classroom dynamics regarding small-group activities are not as well understood

as one would like, and facile assumptions that "small group interactions are best"

may not be warranted. The issue of "ideal" class configurations for problem

solving lessons needs more thought and experimentation.

• Assessment practices must reward and encourage the kinds of behaviors we

wish students to demonstrate.

(Lester, Garofalo, & Kroll, 1989, pp. 88-95)

To sum up the results of these this section in brief: Developing self-regulatory

skills in complex subject-matter domains is difficult. It often involves "behavior

modification," unlearning inappropriate control behaviors developed through prior

instruction. Such change can be catalyzed, but it requires a long period of time, with

sustained attention to both cognitive and metacognitive processes. The task of creating

the "right" instructional context, and providing the appropriate kinds of modeling and

guidance, is challenging and subtle for the teacher. The two studies cited point to some

effective teacher behaviors, and to classroom practices, that foster the development of

self-regulatory skills. However, these represent only a beginning. They document the

teaching efforts of established researchers who have, themselves, the luxury to reflect

on such issues and prepare instruction devoted to them. Making the move from such

"existence proofs" (problematic as they are) to standard classrooms will require a

substantial amount of conceptualizing and pedagogical engineering.

Beliefs and Affects

Once upon a time there was a sharply delineated distinction between the

cognitive and affective domains, as reflected in the two volumes of Bloom's (1956)

Taxonomies. Concepts such as mathematics anxiety, for example, clearly resided in

the affective domain and were measured by questionnaires dealing with how the

individual feels about mathematics (see, e.g., Suinn, Edie, Nicoletti, & Spinelli, 1972);

concepts such as mathematics achievement and problem solving resided within the

cognitive domain, and were assessed by tests focusing on subject matter knowledge

alone. As our vision gets clearer, however, the boundaries between those two domains

become increasingly blurred.
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Given the space constraints, to review the relevant literature or even try to give a

sense of it would be an impossibility. Fortunately, one can point to chapter XXXX in this

Handbook and to volumes such as McLeod and Adams' (1989) Affect and mathematical

problem solving: A new perspective as authoritative starting points for a discussion of

affect. Beliefs -- to be interpreted as "an individual's understandings and feelings that

shape the ways that the individual conceptualizes and engages in mathematical

behavior" -- will receive a telegraphic discussion. The discussion will take place in three

parts: student beliefs, teacher beliefs, and general societal beliefs about doing

mathematics. There is a fairly extensive literature on the first, a moderate but growing

literature on the second, and a small literature on the third. Hence length of discussion

does not correlate with the size of the literature base.

Student beliefs

As an introduction to the topic, we recall Lampert's commentary:

Commonly, mathematics is associated with certainty; knowing it, with

being able to get the right answer, quickly (Ball, 1988; Schoenfeld, 1985b;

Stodolsky, 1985). These cultural assumptions are shaped by school experience,

in which doing mathematics means following the rules laid down by the teacher;

knowing mathematics means remembering and applying the correct rule when

the teacher asks a question; and mathematical truth is determined when the

answer is ratified by the teacher. Beliefs about how to do mathematics and what

it means to know it in school are acquired through years of watching, listening,

and practicing. (Lampert, in press, p. 5)

An extension of Lampert's list, including other student beliefs delineated in the

sources she cites, is given in Table 3.
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________________________________________________________

Typical student beliefs about the nature of mathematics

• Mathematics problems have one and only one right answer.

• There is only one correct way to solve any mathematics problem -- usually the

rule the teacher has most recently demonstrated to the class.

• Ordinary students cannot expect to understand mathematics; they expect

simply to memorize it, and apply what they have learned mechanically and

without understanding.

• Mathematics is a solitary activity, done by individuals in isolation.

• Students who have understood the mathematics they have studied will be able

to solve any assigned problem in five minutes or less.

• The mathematics learned in school has little or nothing to do with the real

world.

• Formal proof is irrelevant to processes of discovery or invention.

_______________________________________________________

Table 3

The basic arguments regarding student beliefs were made in part I. As an

illustration, we point to the genesis and consequences of one belief, regarding the

amount of time students believe that it is appropriate to spend working mathematics

problems. The data come from year-long observations of high school geometry

classes.

Over the period of a full school year, none of the students in any of the

dozen classes we observed worked mathematical tasks that could seriously be

called problems. What the students worked were exercises: tasks designed to

indicate mastery of relatively small chunks of subject matter, and to be completed

in a short amount of time. In a typical five-day sequence, for example, students

were given homework assignments that consisted of 28, 45, 18, 27, and 30

"problems" respectively. ... [A particular] teacher's practice was to have students
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present solutions to as many of the homework problems as possible at the board.

Given the length of his assignments, that means that he expected the students to

be able to work twenty or more "problems" in a fifty-four minute class period.

Indeed, the unit test on locus and construction problems (a uniform exam in Math

10 classes at the school) contained twenty-five problems -- giving students an

average two minutes and ten seconds to work each problem. The teacher's

advice to the students summed things up in a nutshell: "You'll have to know all

your constructions cold so you don't spend a lot of time thinking about them."

[emphasis added.]...

In sum, students who have finished a full twelve years of mathematics

have worked thousands upon thousands of "problems" -- virtually none of which

were expected to take the students more than a few minutes to complete. The

presumption underlying the assignments was as follows: If you understand the

material, you can work the exercises. If you can't work the exercises within a

reasonable amount of time, then you don't understand the material. That's a sign

that you should seek help.

Whether or not the message is intended, students get it. One of the open-

ended items on our questionnaire, administered to students in twelve high school

mathematics classes in grades 9 through 12, read as follows: "If you understand

the material, how long should it take to answer a typical homework problem?

What is a reasonable amount of time to work on a problem before you know it's

impossible?" Means for the two parts of the question were 2.2 minutes (n=221)

and 11.7 minutes (n = 227), respectively. (Schoenfeld, Spring 1988, pp. 159-

160.)

Unfortunately, this belief has a serious behavioral corollary. Students with the

belief will give up working on a problem after a few minutes of unsuccessful attempts,

even though they might have solved it had they persevered.

There are parallel arguments regarding the genesis and consequences of the

each of the beliefs listed in Table 3. Recall, for example, the discussion of the artificial

nature of Milne's mental arithmetic problems in Part I of this chapter. It was argued that,

after extended experience with "cover stories" for problems that are essentially

algorithmic exercises, students come to ignore the cover stories and focus on the

"bottom line:" performing the algorithm and writing down the answer. That kind of
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behavior produced an astonishing and widely quoted result on the third National

Assessment of Educational Progress (NAEP,1983), when a plurality of students who

performed the correct numerical procedure on a problem ignored the cover story for the

problem and wrote that the number of buses requires for a given task was "31

remainder 12." In short:

1. Students abstract their beliefs about formal mathematics -- their sense of their

discipline -- in large measure from their experiences in the classroom.

2. Students' beliefs shape their behavior in ways that have extraordinarily

powerful (and often negative) consequences.

Teacher beliefs

Belief structures are important not only for students, but for teachers as well.

Simply put, a teacher's sense of the mathematical enterprise determines the nature of

the classroom environment that the teacher creates. That environment, in turn, shapes

students' beliefs about the nature of mathematics. We briefly cite two studies that

provide clear documentation of this point. Cooney (1985) discussed the classroom

behavior of a beginning teacher who professed a belief in "problem solving." At bottom,

however, this teacher felt that giving students "fun" or non-standard problems to work on

-- his conception of problem solving -- was, although recreational and motivational,

ultimately subordinate to the goal of having students master the subject matter he was

supposed to cover. Under the pressures of content coverage, he sacrificed his

(essentially superficial) problem solving goals for the more immediate goals of drilling

his students on the things they would be held accountable for.

Thompson (1985) presents two case studies demonstrating the ways that

teacher beliefs play out in the classroom. One of her informants was named Jeanne.

Jeanne's remarks revealed a view of the content of mathematics as fixed

and predetermined, as dictated by the physical world. At no time during either

the lessons [Thompson observed] of the interviews did she allude to the

generative processes of mathematics. It seemed apparent that she regarded

mathematics as a finished product to be assimilated....

Jeanne's conception of mathematics teaching can be characterized in

terms of her view of her role in teaching the subject matter and the students' role
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in learning it. Those were, in gross terms, that she was to disseminate

information, and that her students were to receive it. (Thompson, 1985, p. 286).

These beliefs played out in Jeanne's instruction. The teacher's task, as she saw

it, was to present the lesson planned, without digressions or inefficient changes. Her

students experienced the kind of rigid instruction that leads to the development of some

of the student beliefs described above.

Thompson's second informant was named Kay. Among Kay's beliefs about

mathematics and pedagogy:

• Mathematics is more a subject of ideas and mental processes than a subject of

facts.

• Mathematics can be best understood by rediscovering its ideas.

• Discovery and verification are essential processes in mathematics.

• The main objective of the study of mathematics is to develop reasoning skills

that are necessary for solving problems. ...

• The teacher must create and maintain an open and informal classroom

atmosphere to insure the students' freedom to ask questions and explore their

ideas. ...

• The teacher should encourage students to guess and conjecture and should

allow them to reason things on their own rather than show them how to reach

a solution or an answer. ...

• The teacher should appeal to students' intuition and experiences when

presenting the material in order to make it meaningful.

(Thompson, 1985, pp. 288-290)

Kay's pedagogy was consistent with her beliefs, and resulted in a classroom

atmosphere that was at least potentially supportive of the development of her students'

problem solving abilities.

One may ask, of course, where teachers obtain their notions regarding the nature

of mathematics and of the appropriate pedagogy for mathematics instruction. Not
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surprisingly, Thompson notes: "There is research evidence that teachers' conceptions

and practices, particularly those of beginning teachers, are largely influenced by their

schooling experience prior to entering methods of teaching courses." Hence teacher

beliefs tend to come home to roost in successive generations of teachers, in what may

for the most part be a vicious pedagogical/epistemological circle.

Societal beliefs

Stigler & Perry (1989) report on a series of cross-cultural studies that serve to

highlight some of the societal beliefs in the United States, Japan, and China regarding

mathematics.

[T]here are large cultural differences in the beliefs held by parents,

teachers, and children about the nature of mathematics learning. These beliefs

can be organized into three broad categories: beliefs about what is possible, (i.e.,

what children are able to learn about mathematics at different ages); beliefs

about what is desirable (i.e., what children should learn); and beliefs about what

is the best method for teaching mathematics (i.e., how children should be taught).

(Stigler & Perry, 1989, p. 196)

Regarding what is possible, the studies indicate that people in the U.S. are much

more likely than the Japanese to believe that innate ability (as opposed to effort)

underlies children's success in mathematics. Such beliefs play out in important ways.

First, parents and students who believe "either you have it or you don't" are much less

likely to encourage students to work hard on mathematics than those who believe "you

can do it if you try." Second, our nation's textbooks reflect our uniformly low

expectations of students: "U.S. elementary textbooks introduce large numbers at a

slower pace than do Japanese, Chinese, or Soviet textbooks, and delay the introduction

of regrouping in addition and subtraction considerably longer than do books in other

countries" (Stigler & Perry, 1989, p. 196). Regarding what is desirable, the studies

indicate that -- despite the international comparison studies -- parents in the U.S.

believe that reading, not mathematics, needs more emphasis in the curriculum. And

finally, on methods:

Those in the U.S., particularly with respect to mathematics, tend to assume that

understanding is equivalent to sudden insight. With mathematics, one often

hears teachers tell children that they "either know it or they don't," implying that
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mathematics problems can either be solved quickly or not at all. ... In Japan and

China, understanding is conceived of as a more gradual process, where the more

one struggles the more one comes to understand. Perhaps for this reason, one

sees teachers in Japan and China pose more difficult problems, sometimes so

difficult that the children will probably not be able to solve them within a single

class period. (Stigler & Perry, 1989, p. 197)

In sum: whether acknowledged or not, whether conscious or not, beliefs shape

mathematical behavior. Beliefs are abstracted from one's experiences and from the

culture in which one is embedded. This leads to the consideration of mathematical

practice.

Practices

As an introduction to this section we recall Resnick's comments regarding

mathematics instruction:

Becoming a good mathematical problem solver -- becoming a good thinker in any

domain -- may be as much a matter of acquiring the habits and dispositions of

interpretation and sense-making as of acquiring any particular set of skills,

strategies, or knowledge. If this is so, we may do well to conceive of

mathematics education less as an instructional process (in the traditional sense

of teaching specific, well-defined skills or items of knowledge), than as a

socialization process. (Resnick, 1989, p. 58)

The preceding section on beliefs and affects described some of the unfortunate

consequences of entering the wrong kind of mathematical practice -- the practice of

"school mathematics." Here we examine some positive examples. These classroom

environments, designed to reflect selected aspects of the mathematical community,

have students interact (with each other and the mathematics) in ways that promote

mathematical thinking. We take them in increasing grade order.

Lampert (in press) explicitly invokes a Pólya-Lakatosian epistemological

backdrop for her fifth-grade lessons on exponentiation, deriving pedagogical practice

from that epistemological stance. She describes:

... a research and development project in teaching designed to examine whether

and how it might be possible to bring the practice of knowing mathematics in
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school closer to what it means to know mathematics within the discipline by

deliberately altering the roles and responsibilities of teacher and students in

classroom discourse.... A [representative] case of teaching and learning about

exponents derived from lessons taught in the project is described and interpreted

from mathematical, pedagogical, and sociolinguistic perspectives. To change the

meaning of knowing and learning in school, the teacher initiated and supported

social interactions appropriate to making mathematical arguments in response to

students' conjectures. The activities in which students engaged as they asserted

and examined hypotheses about the mathematical structures that underlie their

solutions to problems are contrasted with the conventional activities that

characterize school mathematics. (Lampert, in press, p. 1).

Lampert describes a series of lessons on exponents, in which students first found

patterns of the last digits in the squares of natural numbers and then explored the last

digits of large numbers -- e.g. what is the last digit of 75? In the process of classroom

discussion, students found patterns, made definitions, reasoned about their claims, and

ultimately defended their claims on mathematical grounds. At one point, for example, a

student named Sam asserted flatly that the last digit of 75 is a 7, while others claimed

that it as 1 or 9.

[Lampert] said: "You must have a proof in mind, Sam, to be so sure," and then I

asked, "Arthur, why do you think it's a 1?"...

[T]he students attempted to resolve the problem of having more than one

conjecture about what the last digit in seven to the fifth power might be. [The

discussion] was a zig-zag between proofs that the last digit must be 7 and

refutations of Arthur's and Sarah's alternative conjectures. The discussion

ranged between observations of particular answers and generalizations about

how exponents -- and numbers more generally -- work. Students examined their

own assumptions and those of their classmates. I assumed the role of manager

of the discussion and sometimes participated in the argument, refuting a

student's assertion. ...

At the end of the lesson, in which the class explored simple ways of looking at

the last digits of 78 and 716,
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some students were verging on declaring an important law of exponents: (na)(nb)

= na+b, which they would articulate more fully, and prove the legitimacy of, in the

next few classes. They were also beginning to develop a modular arithmetic of

"last digits" to go with different base numbers, leading them into further

generalizations about the properties of exponents. (Lampert, in press, pp. 32-34.)

Note that Lampert did not "reveal truth," but entered the dialogue as a

knowledgeable participant -- a representative of the mathematical community who was

not an all-knowing authority but rather one who could ask pointed questions to help

students arrive at the correct mathematical judgments. Her pedagogical practice, in

deflecting undue authority from the teacher, placed the burden of mathematical

judgment (with constraints) on the shoulders of the students.

Balacheff (1987) exploits social interactions in a different way, but with similar

epistemological goals. He describes a series of lessons for seventh graders, concerned

with the theorem that "the sum of the angles of a triangle is 180°." The lessons begin

with the class divided into small groups. Each group is given a work sheet with a copy

of the same triangle, and asked to compute the sum of its angles. The groups then

report their answers, which vary widely -- often from as little as 100° to as much as

300°! Since the students know they had all measured the same triangle, this causes a

tension that must be resolved; they work on it until all students agree on a value.

Balacheff then hands out a different triangle to each group, and has the group

conjecture the sum of the angles of its triangle before measuring it. Groups compare

and contrast their results, and repeat the process with each other's triangles. The

conflicts within and across groups, and the discussions that result in the resolutions of

those conflicts, make the relevant mathematical issues salient and meaningful to the

students, so that they are intellectually prepared for the theoretical discussions (of a

similar dialectical nature) that follow.

In a classic study that is strikingly contemporary in its spirit, Fawcett (1938)

describes a two-year long course in plane geometry he taught at the Ohio State

laboratory school in the 1930's. Fawcett's goals were that students develop a good

understanding of the subject matter of geometry, the right epistemological sense about

the mathematics, and a sense of the applicability of the reasoning procedures that they

had learned in geometry to situations outside of the mathematics classroom. In order

for this to happen, he believed, (1) the students had to engage in doing mathematics in

a way consistent with his mathematical epistemology, (2) the connections between
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mathematical reasoning in the formal context of the classroom and mathematical

reasoning outside of it would have to be made explicit, and (3) the students would need

to reflect both on their doing of mathematics and on the connections between the

reasoning in both contexts.

For example, the issue of definition is important in mathematics. Fawcett pointed

out that definitions have consequences: in his school, for example, there was an award

for the "best teacher." Many students favored the librarian -- but was the librarian a

teacher? Or, he used sports as an analogy. In baseball, for example, there might be

varying definitions of "foul ball" (is a fly ball that hits the foul pole fair or foul?) -- but once

one sets the rules, the game can be played with consistency. After such discussions,

Fawcett notes "[n]o difficulty was met in leading the pupils to realize that these rules

were nothing more than agreements which a group of interested people had made and

that they implied certain conclusions" (p.33). In the mathematical domain, he had his

students debate the nature and usefulness of various definitions. Rather than provide

the definition of "adjacent angle," for example, he asked the class to propose and

defend various definitions. The first was "angles that share a common side," which was

ruled out by Fig. 6a. A second suggestion, "angles that share a common vertex," was

ruled out by Fig. 6b. "Angles that share a common side and a common vertex" had a

good deal of support, until it was ruled out by Fig. 6c. Finally the class agreed upon a

mathematically correct definition.

A

B
C D E

F

a. two angles that share
     a common side

b. two angles that share
     a common vertex

c. two angles that share
     a common side and
     a common vertex

Figure 6. Examples used to examine different definitions of "adjacent angles."

To recall a statement on the nature of mathematical doing by Pólya , "To a

mathematician who is active in research, mathematics may appear sometimes as a

guessing game; you have to guess a mathematical theorem before you prove it, you

have to guess the idea of a proof before you carry through all the details" (Patterns of
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plausible inference, p. 158). Fawcett's class was engineered along these lines. He

never gave assignments of the following form:

Prove that the diagonals of a parallelogram bisect each other but are not

necessarily mutually perpendicular; prove that the diagonals of a rhombus are

mutually perpendicular in addition.

Instead, he would pose the problems in the following form.

1. Consider the parallelogram ABCD in Fig. 7a, with diagonals AC and BD.

State all the properties of the figure that you are willing to accept. Then, give

a complete argument justifying why you believe your assertions to be correct.

2. Suppose you assume in addition that AB = BC, so that the quadrilateral ABCD

is a rhombus (Fig. 7b). State all the additional properties of the figure that you

are willing to accept. Then, give a complete argument justifying why you

believe your additional assertions to be correct.

A

B C

D A

B C

D

a. ABCD is a parallelogram. What do

you think must be true?

b.  ABCD is a rhombus.  What else do

     you think must be true?

Fig. 7.  The kinds of questions Fawcett asked

Needless to say, different students had different opinions regarding what they

would accept as properties of the figures. Fawcett had students representing the

different positions argue their conclusions -- that is, a claim about a property of either

figure had to be defended mathematically. The class (with Fawcett serving as an

"especially knowledgeable member" but not as sole authority) served as "jury." Class

discussions included not only what was right and wrong (i.e. does a figure have a given

property?), but also reflections on the nature of argumentation itself: are inductive proofs
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always valid; are converses always true, and so on. In short, Fawcett's students were

acting like mathematicians, at the limits of their own community's (i.e. the classroom's)

knowledge.

We continue with two examples at the college level. Alibert and his colleagues

(Alibert, 1988) have developed a calculus course at Grenoble based on the following

principles:

1. Coming to grips with uncertainty is major part of the learning process.

2. A major role of proofs (the product of "scientific debate") is to convince first

oneself, and then others, of the truth of a conjecture.

3. Mathematical tools can evolve meaningfully from the solution of complex

problems, often taken from the physical sciences.

4. Students should be induced to reflect on their own thought processes.

Their course, based on these premises, introduces major mathematics topics

with significant problems from the physical sciences (e.g. the Riemann integral is

introduced and motivated by a problem asking students to determine the gravitational

attraction exerted by a stick on a marble). While in typical calculus classes the historical

example would soon be abandoned and the subject matter would be presented in cut-

and-dried fashion, the Grenoble course is true to its principles. The class, in a debate

resembling that discussed in the examples from Lampert and Fawcett, formulates the

mathematical problem and resolves it (in the sense of the term used by Mason, Burton,

& Stacey, 1982) by a discussion in which ideas spring from the class and are nurtured

by the instructor, who plays a facilitating and critical rather than show-and-tell role.

According to Alibert, experiences of this type result in the students' coming to

grips with some fundamental mathematical notions. After the course,

Their conceptions of mathematics are interesting -- and important for their

learning. A large majority of the students answer the ... question ["what does

mathematics mean to you?"] at an epistemological level; their "school"

epistemology has almost disappeared. (Alibert, 1988, p. 35).

Finally, Schoenfeld's problem solving courses at the college level have many of

the same attributes. As in Fawcett's case, no problems are posed in the "prove that"
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format; all are "what do you think is true, and why?" questions. Schoenfeld

(forthcoming) explicitly deflects teacher authority to the student community, both in

withholding his own understandings of problem solutions (many problems the class

works on for days or weeks are problems for which he could present a 10-minute lecture

solution) and developing in the class the critical sense of mathematical argumentation

that leads it, as a community, to accept or reject on appropriate mathematical grounds

the proposals made by class members.

For example, in a discussion of the Pythagorean theorem (Schoenfeld, in press,

forthcoming) Schoenfeld posed the problem of finding all solutions in integers to the

equation a2 + b2 = c2. There is a known solution, which he did not present. The class

made a series of observations, among them:

1. Multiples of known solutions (e.g. the {6,8,10} right triangle as a multiple of the

{3,4,5}) are easy to obtain, but of no real interest. The class would focus on

triangles whose sides were relatively prime.

2. The class observed, conjectured, and proved that in a relatively prime

solution, the value of c is always odd.

3. Students observed that in all the cases of relatively prime solutions they knew

-- e.g. {3,4,5}, (5,12,13}, {7,24,25}, {8,15,17}, {12,35,37} -- the larger leg (b)

and the hypotenuse (c) differed by either 1 or 2. They conjectured that there

are infinitely many triples in which b and c differ by 1 and by 2, and no others.

4. They proved that there are infinitely many solutions where b and c differ by 1,

and also infinitely many solutions where b and c differ by 2; they proved there

are no solutions where b and c differ by 3. At that point a student asked if,

should the pattern continue (i.e. if they could prove their conjecture), they

would have a publishable theorem.

Of course, the answer to the student's question was no. First, the conjecture was

wrong: there is, for example, the {20,21,29} triple. Second, the definitive result -- all

Pythagorean triples are of the form {M2-N2, 2MN, M2+N2} -- is well known and long

established within the mathematical community. But to dismiss the students' results is to

do them a grave injustice. In fact, all three of the results proved by the students in (4)

above were new to the instructor. The students were doing mathematics, at the

frontiers of their community's knowledge.
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In all of the examples discussed in this section, classroom environments were

designed to be consonant with the instructors' epistemological sense of mathematics as

an ongoing, dynamic discipline of sense-making through the dialectic of conjecture and

argumentation. In all, the authors provide some anecdotal and some empirically

"objective" documentations of success. Yet, the existence of these positive cases

raises far more questions that it answers. The issues raised here, and in general by the

research discussed in this chapter, are the focus of discussion in the next section.

PART III: ISSUES

We conclude with an assessment of the state of the art in each of the areas

discussed in this paper, pointing to both theoretical and practical issues that need

attention and clarification. Caveat lector: The comments made here reflect the opinions

of the author, and may be shared to various degrees by the research community at

large.

This chapter has focused on an emerging conceptualization of mathematical

thinking based on an alternative epistemology in which the traditional conception of

domain knowledge plays an altered and diminished role, even when it is expanded to

include problem solving strategies. In this emerging view metacognition, belief, and

mathematical practices are considered critical aspects of thinking mathematically. But

there is more. The person who thinks mathematically has a particular way of seeing the

world, of representing it, of analyzing it. Only within that overarching context do the

pieces -- the knowledge base, strategies, control, beliefs, and practices -- fit together

coherently. We begin the discussion with comments on what it might mean for the

pieces to fit together.

A useful idea for helping to analyze and understand complex systems is that of a

nearly decomposable system. The idea is that one can make progress in understanding

a large and complex system by carefully abstracting from it subsystems for analysis,

and then combining the analyses of the subsystems into an analysis of the whole. The

study of human physiology provides a familiar example. Significant progress in our

understanding of physiology has been made by conducting analyses of the circulatory

system, the respiratory system, the digestive system, and so on. Such analyses yield

tremendous insights, and help to move us forward in understanding human physiology
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as a whole. However, insights at the subsystem level alone are insufficient:

Interactions among the subsystems must be considered, and the whole is obviously

much more than the sum of its parts.

One can argue, I think convincingly, that the categories in the framework

identified and discussed in Part II of this chapter provide a coherent and relatively

comprehensive near decomposition of mathematical thinking (or at least, mathematical

behavior). The individual categories cohere, and within them (to varying degrees of

success) research has produced some ideas regarding underlying mechanisms. But

the research community understands little about the interactions among the categories,

and less about how they come to cohere -- in particular how an individual's learning in

all of those categories fits together to give the individual's sense of the mathematical

enterprise, his or her "mathematical point of view." My own bias is that the key to this

problem lies in the study of enculturation, of entry into the mathematical community. For

the most part, people develop their sense of any serious endeavor -- be it their religious

beliefs, their attitude toward music, their identities as professionals or workers, their

sense of themselves as readers (or non-readers), or their sense of mathematics -- from

interactions with others. And if we are to understand how people develop their

mathematical perspectives, we must look at the issue in terms of the mathematical

communities in which students live, and the practices that underlie those communities.

The role of interactions with others will be central in understanding learning, whether it

be understanding how individuals come to grips with the specifics of the domain (see,

e.g., Moschkovich, 1989; Newman, Griffin, & Cole, 1989; Schoenfeld, Smith & Arcavi,

forthcoming) or more broad issues about developing perspectives and values (see, e.g.

Lave & Wenger, 1989; Schoenfeld, 1989c, forthcoming). This theme will be explored a

bit more in the section on practices. We now proceed with a discussion of issues

related to research, instruction, and assessment.

Fundamental issues remain unaddressed or unresolved in the general area of

problem solving and in each of the particular areas addressed in Part II of this chapter.

To begin, the field needs much greater clarity on the meanings of the term "problem

solving." The term has served as an umbrella under which radically different types of

research have been conducted. At minimum there should be a de facto requirement

(now the exception rather than the rule) that every study or discussion of problem

solving be accompanied by an operational definition of the term and examples of what

the author means -- whether it be working the exercises at the end of the chapter,
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scoring well on the Putnam exam, or "developing a mathematical point of view and the

tools to go with it" as discussed in this chapter. Although one is loath to make

recommendations that may result in jargon proliferation, it seems that the time is

overdue for the field to undertake some form of consensus definitions about various

aspects of problem solving. Great confusion arises when the same term refers to a

multitude of sometimes contradictory and typically underspecified behaviors.

Along the same general lines, much greater clarity is necessary with regard to

research methods. It is generally accepted that all research methodologies (a) address

only particular aspects of problem solving behavior, leaving others unaddressed; (b)

cast some behaviors into high relief, allowing for a close analysis of those; and (c) either

obscure or distort other behaviors. The researchers' tool kit is expanding, from the

collection of mostly statistical and experimental techniques largely employed through

the 1970's (comparison studies, regression analyses, and so on) to the broad range of

clinical, protocol analysis, simulation and computer modeling methods used today.

Such methods are often ill- or inappropriately used. Those we understand well should,

perhaps, come with "user's guides" of the following type: "this method is suited for

explorations of A, B, and C, with the following caveats; it has not proven reliable for

explorations of D, E, and F." Here is one example, as a case in point:

The protocol parsing scheme used to produce figures 3, 4, and 5 in this chapter

(See Schoenfeld, 1985a), which analyzed protocols gathered in non-interventive

problem solving sessions, is appropriate for documenting the presence or

absence of executive decisions in problem solving, and demonstrating the

consequences of those executive decisions. However, it is likely to be useful

only on problems of Webster's type 2 -- "perplexing or difficult" problems, in

which individuals must make difficult choices about resource allocation. (Control

behavior is unlikely to be necessary or relevant when individuals are working

routine or algorithmic exercises.) Moreover, the method reveals little or nothing

about the mechanisms underlying successful or unsuccessful monitoring and

assessment. More interventive methods will almost certainly be necessary to

probe, on the spot, why individuals did or did not pursue particular options during

problem solving. These, of course, will disturb the flow of problem solutions;

hence the parsing method will no longer be appropriate for analyzing those

protocols.
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Indeed, a contemporary guide to research methods would be a useful tool for the

field.

With regard to resources (domain knowledge), the two main issues that require

attention are (a) finding adequate descriptions and representations of cognitive

structures, and (b) elaborating the dynamic interaction between resources and other

aspects of problem solving behavior as people engage in and with mathematics. Over

the past decade researchers have developed some careful and fine-grained

representations of mathematical structures, but the field still has a way to go before

there is a strong congruence between the ways we describe knowledge structures and

our sense of how such structures work phenomenologically. And, we still lack a good

sense of how the pieces fit together. How do resources interact with strategies, control,

beliefs, and practices?

Much of the theoretical work with regard to problem solving strategies has

already been done; the remaining issues are more on the practical and

implementational levels. The spade work for the elaboration of problem solving

strategies exists, in that there is a blueprint for elaborating strategies. It has been

shown that problem solving strategies can be described, in detail, at a level that is

learnable. Following up on such studies, we now need careful controlled data on the

nature and amount of training, over what kinds of problems, that results in the

acquisition of particular strategies (and how far strategy acquisition transfers). That is a

demanding task, but not a theoretically difficult one.

We have made far less progress with regard to control. The importance of the

idea has been identified and some methodological tools have been developed for

charting control behaviors during problem solving. Moreover, research indicates that

students (at least at the advanced secondary and college level) can be taught to

develop productive control behaviors, although only in extended instruction that, in

effect, amounts to behavior modification. There remain some fundamental issues, such

as the following two.

First, mechanism. We lack an adequate characterization of control. That is, we

do not have good theoretical models of what control is, and how it works. We do not

know, for example, whether control is domain-independent or domain-dependent, and

what the mechanisms tying control decisions to domain knowledge might be. Second,

development. We know that in some domains, children can demonstrate astonishingly
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subtle self-regulatory behaviors -- e.g. in social situations, where they pick up behavioral

and conversational cues regarding whether and how to pursue particular topic of

conversation with their parents. How and when do children develop such skills in the

social domain? How and when do they develop (or fail to develop) the analogous skills

in the domain of mathematics? Are the apparent similarities merely apparent, or do

they have a common base in some way? We have barely a clue regarding the answers

to all of these questions.

The arena of beliefs and affects is re-emerging as a focus of research, and it

needs concentrated attention. It is basically under-conceptualized, and it stands in need

both of new methodologies and new explanatory frames. The older measurement tools

and concepts found in the affective literature are simply inadequate; they are not at a

level of mechanism and most often tell us that something happens without offering good

suggestions as to how and why. Recent work on beliefs points to issues of importance

that straddle the cognitive and affective domains, but much of that work is still at the

"telling good stories" level rather than the level of providing solid explanations. Despite

some theoretical advances in recent years and increasing interest in the topic, we are

still a long way from either (a) having unifying perspectives that allow for the meaningful

integration of cognition and affect, or (b) understanding, if such unification is not

possible, why it is not.

Issues regarding practices and the means by which they are learned --

enculturation -- may be even more problematic. Here, in what may ultimately turn out to

be one of the most important arenas for understanding the development of

mathematical thinking, we seem to know the least. The importance of enculturation has

now been recognized, but the best we can offer thus far in explication of it is a small

number of well-described case studies. Those studies, however, give only the barest

hints at underlying mechanisms . On the one hand, the tools available to cognitivists

have yet to encompass the kinds of social issues clearly relevant for studies of

enculturation -- e.g. how one picks up the biases and perspectives common to members

of a particular subculture. On the other hand, extant theoretical means for discussing

phenomena such as enculturation do not yet operate at the detailed level that results in

productive discussions of what people learn (e.g. about mathematics) and why. There

are hints regarding theoretical means for looking at the issue, such as Lave and

Wenger's (1989) concept of "legitimate peripheral participation." Roughly, the idea is

that by sitting on the fringe of a community, one gets a sense of the enterprise; as one
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interacts with members of the community and becomes more deeply embedded in it,

one learns its language and picks up its perspectives as well. It remains to be seen,

however, how such concepts will be developed and whether they will be up to the task.

Turning to practical issues, one notes that there is a host of unsolved and largely

unaddressed questions dealing with instruction and assessment. It appears that as a

nation we will be moving rapidly in the direction of new curricula, some of them very

much along the lines suggested in this chapter. At the national level, Everybody Counts

(National Research Council, 1989) represents the Mathematical Sciences Education

Board's attempt to focus discussion on issues of mathematics education. Everybody

Counts makes the case quite clearly that a perpetuation of the status quo is a recipe for

disaster, and it calls for sweeping changes. The NCTM Standards (National Council of

Teachers of Mathematics,1989) reflects an emerging national consensus that all

students should study a common core of material for (a minimum of) three years in

secondary school; Reshaping School mathematics (National Research Council, 1990a)

supports the notion of a three-year common core and provides a philosophical rationale

for a curriculum focusing on developing students' mathematical power. With such

national statements as a backdrop, some states are moving rapidly toward the

implementation of such curricula. In California, for example, the 1985 Mathematics

Framework (California State Department of education, 1985) claimed that "mathematical

power, which involves the ability to discern mathematical relationships, reason logically,

and use mathematical techniques effectively, must be the central concern of

mathematics education" (page 1). Its classroom recommendations were that the

teacher

• Model problem-solving behavior whenever possible, exploring and

experimenting along with students.

• Create a classroom atmosphere in which all students feel comfortable trying

out ideas.

• Invite students to explain their thinking at all stages of problem solving.

• Allow for the fact that more than one strategy may be needed to solve a given

problem and that problems may require original approaches.

• Present problem situations that closely resemble real situations in their

richness and complexity so that the experience that students gain in the
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classroom will be transferable. (California State Department of education,

1985, p. 14.)

The 1991 Mathematics framework (California State Department of education,

forthcoming), currently in draft form, builds on this foundation and moves significantly

further in the directions suggested in this chapter. It recommends that lessons come in

large coherent chunks; that curricular units be anywhere from two to six weeks in length,

motivated by meaningful problems and integrated with regard to subject matter (e.g.

containing problems calling for the simultaneous use of algebra and geometry -- rather

than having geometry taught as a separate subject, as if algebra did not exist); that

students engage in collaborative work, often on projects that take days and weeks to

complete. Pilot projects for a radically new secondary curriculum, implementing these

ideas for grades 9-11, began in selected California schools in September 1989.

The presence of such projects, and their potential dissemination, raises

significant practical and theoretical issues. For example, what kinds of teacher

knowledge and behavior are necessary to implement such curricula on a large scale?

One sees glimmers of ideas in the research (see, e.g., Grouws & Cooney, 1989 for an

overview), but in general, conceptions of how to teach for mathematical thinking have of

necessity lagged behind our evolving conceptions of what it is to think mathematically.

There are some signs of progress. For example, a small body of research (see, e.g.

Peterson, Fennema, Carpenter, & Loef, 1989) suggests that with the appropriate in-

service experiences (on the order of weeks of intensive study, not 1-day workshops),

teachers can learn enough about student learning to change their classroom behavior.

Much more research on teacher beliefs -- how they are formed, how they can be made

to evolve -- is necessary. So is research at the systemic level: what changes in school

and district structures are likely to provide teachers with the support they need to make

the desired changes in the classroom?

We conclude with a brief discussion of what may be the single most potent

systemic force in motivating change: assessment. Everybody Counts (page 69) states

the case succinctly: "What is tested is what gets taught. Tests must measure what is

most important." To state the case bluntly, current assessment measures (especially

the standardized multiple choice tests favored by many administrators for

"accountability") deal with only a minuscule portion of the skills and perspectives

encompassed by the phrase mathematical power and discussed in this chapter. The

development of appropriate assessment measures, at both the individual and the school
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or district levels, will be a very challenging practical and theoretical task. Here are a few

of the relevant questions:

What kinds of information can be gleaned from "open-ended questions," and

what kinds of scoring procedures are (a) reliable, (b) informative both to those who do

the assessing and those who are being tested? Here is one example of an interesting

question type, taken from A question of thinking (California State Department of

Education, 1989).

Imagine you are talking to a student in your class on the telephone and want the

student to draw some figures. [They might be part of a homework assignment,

for example]. The other student cannot see the figures. Write a set of directions

so that the other student can draw the figures exactly as shown below.

To answer this question adequately, one must both understand the geometric

representation of the figures and be able to communicate using mathematical language.

Such questions, while still rather constrained, clearly focus on goals other than simple

subject matter "mastery." A large collection of such items would, at minimum, push the

boundaries of what is typically assessed. But such approaches are only a first step.

Two other approaches currently being explored (by the California Assessment Program,

among others) include the following.

Suppose the student is asked to put together a portfolio representing his or her

best work in mathematics. How can such portfolios be structured to give the best sense

of what the student has learned? What kind of entries should be included (e.g. "the

problem I am proudest of having solved," a record of a group collaborative project, a

description of the student's role in a class project, etc.) and how can they be evaluated

fairly?
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How can one determine the kinds of collaborative skills learned by students in a

mathematics program? Suppose one picks four students at random from a

mathematics class toward the end of the school year, gives them a difficult open-ended

problem to work on, and videotapes what the students do as they work on the problem

for an hour. What kinds of inferences can one make, reliably, from the videotape? One

claim is that a trained observer can determine within the first few minutes of watching

the tape whether the students have had extensive experience in collaborative work in

mathematics. Students who have not had such experiences will most likely find it

difficult to coordinate their efforts, while those who have often worked collaboratively will

(one hopes!) readily fall into certain kinds of cooperative behaviors. Are such claims

justified? How can one develop reliable methods for testing them? Another claim is

that students' fluency at generating a range of approaches to deal with difficult problems

will provide information about the kinds of instruction they have received, and their

success at the strategic and executive aspects of mathematical behavior. But what

kinds of information, and how reliable the information might be, is very much open to

question.

In sum, the imminent implementation of curricula with ambitious pedagogical and

philosophical goals will raise a host of unavoidable and fundamentally difficult

theoretical and practical issues. It is clear that we have our work cut out for us -- but

also that progress over the past decade gives us at least a fighting chance for success.
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