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Logistic Regression Models

Output variable Y is dichotomous (Yi = 0 or Yi = 1)

gi = Xiβ = β1Xi1 + · · ·+ βpXip, for i = 1, . . . ,n.

P(Yi = 1) = πi =
egi

1 + egi
, for i = 1, . . . ,n.
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Maximum Likelihood Estimation

Likelihood function

L =
n∏

i=1

πYi
i (1− πi)

1−Yi

Likelihood equations

n∑
i=1

Xij(Yi − πi) = 0, for j = 1, . . . ,p.
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Example in R

True Model

gi = −3 + 0.06Xi , for i = 1, . . . ,100000.

X=runif(100000,0,100)

g=-3+.06*X
Pi=(exp(g)/(1+exp(g)))

U=runif(100)
Y=(U<Pi)*1
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True Model

gi = −3 + 0.06Xi , for i = 1, . . . ,100000.

model=glm(Y~X,family=binomial)
summary(model)
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Plots

Y vs. X (Not very useful).
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Plots

π̂ vs. X
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Plots

ĝ vs. X (Best plot for assessing functional form)
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Plots

ĝ vs. X (Best plot for assessing functional form)
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Deviance and AIC

Deviance = −2 ln(L) = −2
n∑

i=1

Yi ln(π̂i) + (1− Yi) ln(1− π̂i)

AIC = 2p − 2 ln(L)

ĝi = Xi β̂ = β̂1Xi1 + · · ·+ β̂pXip, for i = 1, . . . ,n.

π̂i =
eĝi

1 + eĝi
, for i = 1, . . . ,n.
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Hypothesis Testing

Consider the logistic regression model

P(Yi = 1) =
egi

1 + egi
, where

gi = Xiβ.

Let V0 ≤ V ≤ Rp, and consider the testing problem

H0 : β ∈ V0 vs. H : β ∈ V .

The test statistic is G = D0 − D, where D0 and D are the
deviances under H0 and H, respectively.
Under H0, the approximate distribution of G is chi-square with
dim(V )− dim(V0) degrees of freedom, so

reject H0 if G > χ2
α(dim(V )− dim(V0)).
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Assessing the Model

Functional form:
I Group plots
I Likelihood ratio tests

Overall Performance
I Classification Accuracy
I Area under ROC Curve
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Classification Accuracy

Choose a cutoff value, and use the classification rule
I If π̂i > cutoff, then Ŷi = 1
I If π̂i < cutoff, then Ŷi = 0.

The classification accuracy is percentage of observations that
were correctly classified (percentage of cases where Yi = Ŷi ).

Classification Accuracy = P(Yi = Ŷi)

To optimize classification accuracy, a reasonable cutoff to use is
0.5.

(Tarleton State University) Logistic Reg. and Discr. Analysis 14 / 39



Sensitivity and Specificity

Sensitivity = P(Ŷi = 1 | Yi = 1)

Specificity = P(Ŷi = 0 | Yi = 0)
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Variable Selection

Manually
Stepwise
Best subsets
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Discriminant Analysis

Used when output variable Y is categorical.
Assume Y is categorical with possible values 0, . . . , k .
Let X be a vector of input variables.
Given an observation X = x , we want to predict the value of Y .
Can also be viewed as a classification problem.

Example
Y = grade in Biol 120 (Y = 1 or Y = 0)
X = student’s high school rank (0 ≤ X ≤ 1)
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Y is a discrete random variable.
It has a p.m.f.

f (y) = P(Y = y), for y = 0, . . . , k .

For each value of Y , the vector X has a conditional distribution
given by

f (x | y)

The conditional p.m.f. of Y given X = x is

P(Y = y | X = x) = f (y | x) =
f (x , y)

f (x)
=

f (y)f (x | y)∑k
y=0 f (y)f (x | y)
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The conditional p.m.f. of Y given X = x is

P(Y = y | X = x) = f (y | x) =
f (x , y)

f (x)
=

f (y)f (x | y)∑k
y=0 f (y)f (x | y)

Given the observation X = x , we predict Y will be equal to the
value of y maximizing f (y)f (x | y).
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Discriminant Analysis with Multivariate Normal
Predictor

Given Y = y , X ∼ N(µy ,Σy ), for y = 0, . . . , k .

f (x | y) = (2π)−p/2|Σy |−1/2 exp{−1
2(x − µy )′Σ−1

y (x − µy )}

If X = x , we predict Y will be equal to the value of y minimizing

d2
y (x) = −2 ln[f (y)] + ln |Σy |+ (x − µy )′Σ−1

y (x − µy )

In practice, we would use

d̂2
y (x) = −2 ln[f̂ (y)] + ln |Sy |+ (x − xy )′S−1

y (x − xy )
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In practice, we would use

d̂2
y (x) = −2 ln[f̂ (y)] + ln |Sy |+ (x − xy )′S−1

y (x − xy )

How can we estimate these quantities?
Assume we have observations for Yi and Xi , for i = 1, . . . ,n.

f̂ (y) =
Number of times Yi = y

n
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Sample Mean and Covariance Matrix

Let x1, . . . , xn ∈ Rp be observations from N(µ,Σ).
The estimate for the mean µ is the sample mean x .

µ̂ = x =
1
n

n∑
i=1

xi

The estimate for the covariance matrix Σ is the empirical
covariance matrix S.

Σ̂ = S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)′

If X is a matrix whose rows are x1, . . . , xn then x and S can be
obtained with the R commands colMeans(X) and cov(X).
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In practice, we would use

d̂2
y (x) = −2 ln[f̂ (y)] + ln |Sy |+ (x − xy )′S−1

y (x − xy )

For each y , set aside all rows of data where Yi = y .
xy and Sy are the sample mean and covariance matrix for the
vectors xi from these rows of data.
For each y , let xy1, . . . , xyny be the values of Xi for those subjects
with Yi = y .
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Highschool Rank and Biol 120 Grade

trank=rank[1:2000]
tgrade=grade[1:2000]
vrank=rank[2001:3146]
vgrade=grade[2001:3146]

L=groupplot(trank,tgrade,20)
plot(L$x,L$g)
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model=glm(tgrade~trank,family=binomial)
betahat=coef(model)

x=(1:100)/100
lines(x,betahat[1]+betahat[2]*x,col=’red’)
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model2=glm(tgrade~trank+I(trank^2),family=binomial)
betahat2=coef(model2)

lines(x,betahat2[1]+betahat2[2]*x
+betahat2[3]*x^2,col=’red’)
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model3=glm(tgrade~trank+I(trank^2)
+I(trank^3),family=binomial)

betahat3=coef(model3)

lines(x,betahat3[1]+betahat3[2]*x
+betahat3[3]*x^2+betahat3[4]*x^3,col=’red’)
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Model with 4th Order Term
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Likelihood Ratio Tests
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Model Validation

For i = 2001, . . . ,3146, we predict Ŷi = 1 if π̂i ≥ 1
2 .

π̂i ≥ 1
2 iff g(xi) ≥ 0.

g(x) = −2.89 + 11.63x − 24.19x2 + 18.92x3

g(xi) ≥ 0 iff x ≥ .71929
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Classification Accuracy

vrank=rank[2001:3146]
vgrade=grade[2001:3146]

vgradehat=(vrank>=.71929)*1
mean(vgradehat==vgrade)

Classification Accuracy = P(Yi = Ŷi) = 0.699
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HS Rank and Biol 120 Grade with Discriminant
Analysis

If X = x , we predict Y will be equal to the value of y minimizing

d̂2
y (x) = −2 ln[f̂ (y)] + ln |Sy |+ (x − xy )′S−1

y (x − xy )

rank0=trank[tgrade==0]
rank1=trank[tgrade==1]

n0=length(rank0)
n1=length(rank1)

f0=n0/(n0+n1)
f1=n1/(n0+n1)
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If X = x , we predict Y will be equal to the value of y minimizing

d̂2
y (x) = −2 ln[f̂ (y)] + ln |Sy |+ (x − xy )′S−1

y (x − xy )

rank0=trank[tgrade==0]
rank1=trank[tgrade==1]

xbar0=mean(rank0)
xbar1=mean(rank1)

s0=sd(rank0)
s1=sd(rank1)
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If X = x , we predict Y will be equal to the value of y minimizing

d̂2
y (x) = −2 ln[f̂ (y)] + ln |Sy |+ (x − xy )′S−1

y (x − xy )

allranks=(1:1000)/1000

d0=-2*log(f0)+log(s0^2)+(allranks-xbar0)^2/s0^2
d1=-2*log(f1)+log(s1^2)+(allranks-xbar1)^2/s1^2
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cbind(allranks,d0,d1,d0<d1)

Discr. Analysis Optimal Cutoff = 0.649
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Cross-validation for Discriminant Analysis

vgradehat=(vrank>=.649)*1
mean(vgradehat==vgrade)

Classification Accuracy = P(Yi = Ŷi) = 0.702
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“Brute Force” Approach

allranks=(1:1000)/1000

classacc=1:1000

for(i in 1:1000){
tempgradehat=(trank>=allranks[i])*1
classacc[i]=mean(tempgradehat==tgrade)

}

max(classacc)

allranks[classacc==max(classacc)]

Optimal Cutoffs = (.717, .719, .720, .721)

Optimal Cutoffs = .7195
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Additional Reading

Hosmer, D.W. (2000). Applied Logistic Regression, 2nd ed.
Wiley-Interscience, New York, N.Y.
Khattree, R. and Naik, D.N. (1999) Applied Multivariate Statistics
with SAS Software, 2nd ed. SAS Institute Inc., Cary, N.C.
Khattree, R. and Naik, D.N. (2000) Multivariate Data Reduction
and Discrimination with SAS Software SAS Institute Inc., Cary,
N.C.
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