Math 5305 Notes Logistic Regression and Discriminant Analysis

Jesse Crawford

Department of Mathematics Tarleton State University

< ロ > < 同 > < 回 > < 回 >

2 Discriminant Analysis

2

Output variable *Y* is dichotomous ($Y_i = 0$ or $Y_i = 1$)

$$g_i = X_i \beta = \beta_1 X_{i1} + \dots + \beta_p X_{ip}$$
, for $i = 1, \dots, n$.

$$P(Y_i = 1) = \pi_i = \frac{e^{g_i}}{1 + e^{g_i}}$$
, for $i = 1, ..., n$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Likelihood function

$$L = \prod_{i=1}^{n} \pi_{i}^{Y_{i}} (1 - \pi_{i})^{1 - Y_{i}}$$

Likelihood equations

$$\sum_{i=1}^{n} X_{ij}(Y_i - \pi_i) = 0, \text{ for } j = 1, \dots, p.$$

True Model

$$g_i = -3 + 0.06X_i$$
, for $i = 1, \dots, 100000$.

```
X=runif(100000,0,100)
```

```
g=-3+.06*X
Pi=(exp(g)/(1+exp(g)))
```

```
U=runif(100)
Y=(U<Pi)*1
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

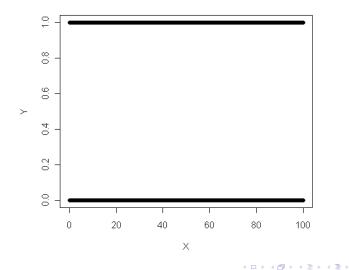
True Model

```
g_i = -3 + 0.06X_i, for i = 1, \dots, 100000.
```

```
model=glm(Y~X,family=binomial)
summary(model)
```

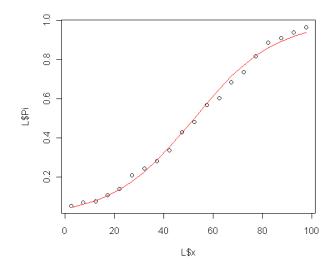
э.

Y vs. X (Not very useful).



æ

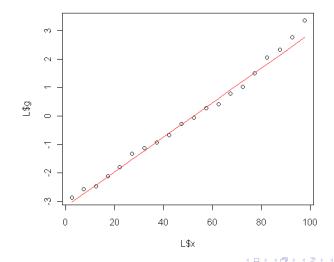
 $\hat{\pi}$ vs. X



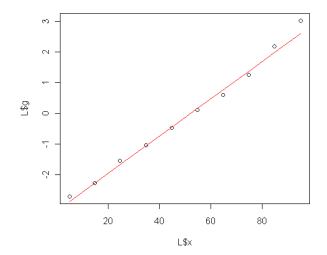
æ

イロト イヨト イヨト イヨト

 \hat{g} vs. X (Best plot for assessing functional form)



 \hat{g} vs. X (Best plot for assessing functional form)



æ

< 🗇 🕨

Deviance =
$$-2\ln(L) = -2\sum_{i=1}^{n} Y_i \ln(\hat{\pi}_i) + (1 - Y_i) \ln(1 - \hat{\pi}_i)$$

$$AIC = 2p - 2\ln(L)$$

$$\hat{g}_i = X_i \hat{eta} = \hat{eta}_1 X_{i1} + \dots + \hat{eta}_p X_{ip}$$
, for $i = 1, \dots, n$.

$$\hat{\pi}_i = rac{e^{\hat{g}_i}}{1+e^{\hat{g}_i}}, ext{ for } i=1,\ldots,n.$$

æ

イロト イヨト イヨト イヨト

Hypothesis Testing

Consider the logistic regression model

$$egin{aligned} P(Y_i = 1) &= rac{e^{g_i}}{1 + e^{g_i}}, ext{ where} \ g_i &= X_ieta. \end{aligned}$$

• Let $V_0 \leq V \leq \mathbb{R}^{p}$, and consider the testing problem

$$H_0: \beta \in V_0$$
 vs. $H: \beta \in V$.

- The test statistic is G = D₀ − D, where D₀ and D are the deviances under H₀ and H, respectively.
- Under H₀, the approximate distribution of G is chi-square with dim(V) – dim(V₀) degrees of freedom, so

reject H₀ if
$$G > \chi^2_{\alpha}(\dim(V) - \dim(V_0))$$
.

A (B) > A (B) > A (B)

- Functional form:
 - Group plots
 - Likelihood ratio tests
- Overall Performance
 - Classification Accuracy
 - Area under ROC Curve

< 17 ▶

• Choose a cutoff value, and use the classification rule

- If $\hat{\pi}_i > \text{cutoff}$, then $\hat{Y}_i = 1$
- If $\hat{\pi}_i < \text{cutoff}$, then $\hat{Y}_i = 0$.
- The classification accuracy is percentage of observations that were correctly classified (percentage of cases where Y_i = Ŷ_i).

Classification Accuracy = $P(Y_i = \hat{Y}_i)$

• To optimize classification accuracy, a reasonable cutoff to use is 0.5.

- Sensitivity = $P(\hat{Y}_i = 1 | Y_i = 1)$
- Specificity = $P(\hat{Y}_i = 0 | Y_i = 0)$

< ロ > < 同 > < 回 > < 回 >

- Manually
- Stepwise
- Best subsets

2

イロト イポト イヨト イヨ

2

イロト イポト イヨト イヨ

- Used when output variable Y is categorical.
- Assume *Y* is categorical with possible values 0, ..., *k*.
- Let X be a vector of input variables.
- Given an observation X = x, we want to predict the value of Y.
- Can also be viewed as a classification problem.

Example

- Y =grade in Biol 120 (Y = 1 or Y = 0)
- X = student's high school rank ($0 \le X \le 1$)

- *Y* is a discrete random variable.
- It has a p.m.f.

$$f(y) = P(Y = y)$$
, for $y = 0, ..., k$.

• For each value of *Y*, the vector *X* has a conditional distribution given by

$$f(x \mid y)$$

• The conditional p.m.f. of *Y* given X = x is

$$P(Y = y \mid X = x) = f(y \mid x) = \frac{f(x, y)}{f(x)} = \frac{f(y)f(x \mid y)}{\sum_{y=0}^{k} f(y)f(x \mid y)}$$

• The conditional p.m.f. of Y given X = x is

$$P(Y = y \mid X = x) = f(y \mid x) = \frac{f(x, y)}{f(x)} = \frac{f(y)f(x \mid y)}{\sum_{y=0}^{k} f(y)f(x \mid y)}$$

Given the observation X = x, we predict Y will be equal to the value of y maximizing f(y)f(x | y).

Discriminant Analysis with Multivariate Normal Predictor

• Given
$$Y = y$$
, $X \sim N(\mu_y, \Sigma_y)$, for $y = 0, \ldots, k$.

$$f(x \mid y) = (2\pi)^{-p/2} |\Sigma_y|^{-1/2} \exp\{-\frac{1}{2}(x - \mu_y)' \Sigma_y^{-1}(x - \mu_y)\}$$

• If X = x, we predict Y will be equal to the value of y minimizing

$$d_y^2(x) = -2\ln[f(y)] + \ln|\Sigma_y| + (x - \mu_y)'\Sigma_y^{-1}(x - \mu_y)$$

In practice, we would use

$$\hat{d}_y^2(x) = -2\ln[\widehat{f(y)}] + \ln|\mathcal{S}_y| + (x-\overline{x}_y)'\mathcal{S}_y^{-1}(x-\overline{x}_y)$$

4 A N

In practice, we would use

$$\hat{d}_{y}^{2}(x) = -2\ln[\widehat{f(y)}] + \ln|S_{y}| + (x - \overline{x}_{y})'S_{y}^{-1}(x - \overline{x}_{y})$$

- How can we estimate these quantities?
- Assume we have observations for Y_i and X_i , for i = 1, ..., n.

$$\widehat{f(y)} = \frac{\text{Number of times } Y_i = y}{n}$$

Sample Mean and Covariance Matrix

- Let $x_1, \ldots, x_n \in \mathbb{R}^p$ be observations from $N(\mu, \Sigma)$.
- The estimate for the mean μ is the sample mean \overline{x} .

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 The estimate for the covariance matrix Σ is the empirical covariance matrix S.

$$\hat{\Sigma} = S = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})'$$

• If X is a matrix whose rows are x_1, \ldots, x_n then \overline{x} and S can be obtained with the R commands colMeans(X) and cov(X).

In practice, we would use

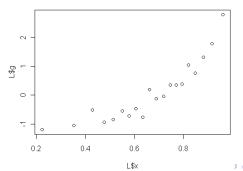
$$\hat{d}_y^2(x) = -2\ln[\widehat{f(y)}] + \ln|\mathcal{S}_y| + (x-\overline{x}_y)'\mathcal{S}_y^{-1}(x-\overline{x}_y)$$

- For each y, set aside all rows of data where $Y_i = y$.
- \overline{x}_y and S_y are the sample mean and covariance matrix for the vectors x_i from these rows of data.
- For each y, let x_{y1},..., x_{yny} be the values of X_i for those subjects with Y_i = y.

Highschool Rank and Biol 120 Grade

```
trank=rank[1:2000]
tgrade=grade[1:2000]
vrank=rank[2001:3146]
vgrade=grade[2001:3146]
```

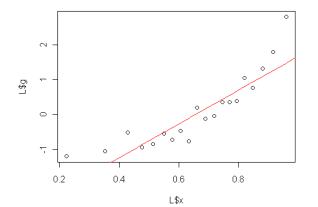
```
L=groupplot(trank,tgrade,20)
plot(L$x,L$g)
```



(Tarleton State University)

```
model=glm(tgrade~trank,family=binomial)
betahat=coef(model)
```

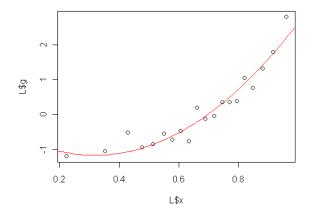
x=(1:100)/100
lines(x,betahat[1]+betahat[2]*x,col='red')



< 3

model2=glm(tgrade~trank+I(trank^2),family=binomial)
betahat2=coef(model2)

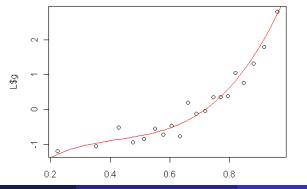
lines(x,betahat2[1]+betahat2[2]*x
+betahat2[3]*x^2,col='red')



(Tarleton State University)

< B.

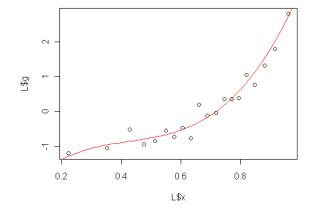
```
lines(x, betahat3[1]+betahat3[2]*x
+betahat3[3]*x^2+betahat3[4]*x^3, col='red')
```



(Tarleton State University)

Logistic Reg. and Discr. Analysis

Model with 4th Order Term



ъ

```
Console ~/ $\approx $
> LRtest(model,model2)
[1] 5.34558e-11
> LRtest(model2,model3)
[1] 0.0006829123
> LRtest(model3,model4)
[1] 0.9089255
> |
```

イロト イ理ト イヨト イヨト

• For $i = 2001, \dots, 3146$, we predict $\hat{Y}_i = 1$ if $\hat{\pi}_i \ge \frac{1}{2}$. • $\hat{\pi}_i \ge \frac{1}{2}$ iff $g(x_i) \ge 0$. • $g(x) = -2.89 + 11.63x - 24.19x^2 + 18.92x^3$ • $g(x_i) \ge 0$ iff $x \ge .71929$ vrank=rank[2001:3146]
vgrade=grade[2001:3146]

vgradehat=(vrank>=.71929)*1
mean(vgradehat==vgrade)

Classification Accuracy = $P(Y_i = \hat{Y}_i) = 0.699$

(Tarleton State University)

A D M A A A M M

글 > < 글

HS Rank and Biol 120 Grade with Discriminant Analysis

If X = x, we predict Y will be equal to the value of y minimizing

$$\hat{d}_y^2(x) = -2\ln[\widehat{f(y)}] + \ln|\mathcal{S}_y| + (x - \overline{x}_y)'\mathcal{S}_y^{-1}(x - \overline{x}_y)$$

```
rank0=trank[tgrade==0]
rank1=trank[tgrade==1]
```

```
n0=length(rank0)
n1=length(rank1)
```

```
f0=n0/(n0+n1)
f1=n1/(n0+n1)
```

If X = x, we predict Y will be equal to the value of y minimizing

$$\hat{d}_y^2(x) = -2\ln[\widehat{f(y)}] + \ln|\mathcal{S}_y| + (x-\overline{x}_y)'\mathcal{S}_y^{-1}(x-\overline{x}_y)$$

```
rank0=trank[tgrade==0]
rank1=trank[tgrade==1]
```

```
xbar0=mean(rank0)
xbar1=mean(rank1)
```

```
s0=sd(rank0)
s1=sd(rank1)
```

If X = x, we predict Y will be equal to the value of y minimizing

$$\hat{d}_{y}^{2}(x) = -2\ln[\widehat{f(y)}] + \ln|S_{y}| + (x - \overline{x}_{y})'S_{y}^{-1}(x - \overline{x}_{y})$$

allranks=(1:1000)/1000

d0=-2*log(f0)+log(s0^2)+(allranks-xbar0)^2/s0^2
d1=-2*log(f1)+log(s1^2)+(allranks-xbar1)^2/s1^2

э.

cbind(allranks,d0,d1,d0<d1)</pre>

[643,]	0.643	-1.9274647498	-1.868919021 1	
[644,]	0.644	-1.9235675598	-1.874871637 1	
[645,]	0.645	-1.9196068876	-1.880758028 1	
[646,]	0.646	-1.9155827331	-1.886578196 1	
[647,]	0.647	-1.9114950963	-1.892332140 1	
[648,]	0.648	-1.9073439772	-1.898019860 1	
[649,]	0.649	-1.9031293759	-1.903641356 0	
[650,]	0.650	-1.8988512923	-1.909196628 0	
[651,]	0.651	-1.8945097264	-1.914685677 0	
[652,]	0.652	-1.8901046782	-1.920108501 0	
[653,]	0.653	-1.8856361478	-1.925465101 0	
[654,]	0.654	-1.8811041351	-1.930755478 0	

Discr. Analysis Optimal Cutoff = 0.649

```
vgradehat=(vrank>=.649)*1
mean(vgradehat==vgrade)
```

Classification Accuracy = $P(Y_i = \hat{Y}_i) = 0.702$

A D M A A A M M

```
allranks=(1:1000)/1000
```

```
classacc=1:1000
```

```
for(i in 1:1000){
   tempgradehat=(trank>=allranks[i])*1
   classacc[i]=mean(tempgradehat==tgrade)
}
```

max(classacc)

allranks[classacc==max(classacc)]

```
Optimal\ Cutoffs = (.717, .719, .720, .721)
```

```
Optimal Cutoffs = .7195
```

- Hosmer, D.W. (2000). Applied Logistic Regression, 2nd ed. Wiley-Interscience, New York, N.Y.
- Khattree, R. and Naik, D.N. (1999) *Applied Multivariate Statistics* with SAS Software, 2nd ed. SAS Institute Inc., Cary, N.C.
- Khattree, R. and Naik, D.N. (2000) Multivariate Data Reduction and Discrimination with SAS Software SAS Institute Inc., Cary, N.C.