Math 5305 Notes
 Logistic Regression and Discriminant Analysis

Jesse Crawford

Department of Mathematics
Tarleton State University

Outline

(1) Logistic Regression
(2) Discriminant Analysis

Logistic Regression Models

Output variable Y is dichotomous $\left(Y_{i}=0\right.$ or $\left.Y_{i}=1\right)$

$$
\begin{gathered}
g_{i}=X_{i} \beta=\beta_{1} X_{i 1}+\cdots+\beta_{p} X_{i p}, \text { for } i=1, \ldots, n \\
\quad P\left(Y_{i}=1\right)=\pi_{i}=\frac{e^{g_{i}}}{1+e^{g_{i}}}, \text { for } i=1, \ldots, n
\end{gathered}
$$

Maximum Likelihood Estimation

Likelihood function

$$
L=\prod_{i=1}^{n} \pi_{i}^{Y_{i}}\left(1-\pi_{i}\right)^{1-Y_{i}}
$$

Likelihood equations

$$
\sum_{i=1}^{n} X_{i j}\left(Y_{i}-\pi_{i}\right)=0, \text { for } j=1, \ldots, p
$$

Example in R

True Model

$$
g_{i}=-3+0.06 X_{i}, \text { for } i=1, \ldots, 100000
$$

```
X=runif(100000,0,100)
g=-3+.06*X
Pi=(exp (g)/(1+exp (g)))
U=runif(100)
Y=(U<Pi)*1
```


True Model

$$
g_{i}=-3+0.06 X_{i} \text {, for } i=1, \ldots, 100000 .
$$

model=glm(Y~X,family=binomial)
summary (model)

```
Ca17:
g7m(formula = Y ~ X, family = binomial)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-2.4339 & -0.6851 & -0.3054 & 0.6772 & 2.5390
\end{tabular}
Coefficients:
    Estimate std. Error z value Pr (> | z |)
(Intercept) -3.1834684 0.0205484 -154.9 <2e-16 ***
× 0.0609352 0.0003656 166.7 <2e-16 ***
signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '. 0.1 ' , 1
(Dispersion parameter for binomial family taken to be 1)
    Nu71 deviance: }138436\mathrm{ on }99999\mathrm{ degrees of freedom
Residual deviance: 92361 on 99998 degrees of freedom
AIC: 92365
Number of Fisher scoring iterations: 4
```


Plots

Y vs. X (Not very useful).

Plots

$\hat{\pi}$ vs. X

Plots

\hat{g} vs. X (Best plot for assessing functional form)

Plots

\hat{g} vs. X (Best plot for assessing functional form)

Deviance and AIC

$$
\begin{gathered}
\text { Deviance }=-2 \ln (L)=-2 \sum_{i=1}^{n} Y_{i} \ln \left(\hat{\pi}_{i}\right)+\left(1-Y_{i}\right) \ln \left(1-\hat{\pi}_{i}\right) \\
\operatorname{AIC}=2 p-2 \ln (L) \\
\hat{g}_{i}=X_{i} \hat{\beta}=\hat{\beta}_{1} X_{i 1}+\cdots+\hat{\beta}_{p} X_{i p}, \text { for } i=1, \ldots, n . \\
\hat{\pi}_{i}=\frac{e^{\hat{g}_{i}}}{1+e^{\hat{g}_{i}}} \text {, for } i=1, \ldots, n .
\end{gathered}
$$

Hypothesis Testing

- Consider the logistic regression model

$$
\begin{gathered}
P\left(Y_{i}=1\right)=\frac{e^{g_{i}}}{1+e^{g_{i}}}, \text { where } \\
g_{i}=X_{i} \beta
\end{gathered}
$$

- Let $V_{0} \leq V \leq \mathbb{R}^{p}$, and consider the testing problem

$$
\mathrm{H}_{0}: \beta \in V_{0} \text { vs. } \mathrm{H}: \beta \in V
$$

- The test statistic is $G=D_{0}-D$, where D_{0} and D are the deviances under H_{0} and H , respectively.
- Under H_{0}, the approximate distribution of G is chi-square with $\operatorname{dim}(V)-\operatorname{dim}\left(V_{0}\right)$ degrees of freedom, so

$$
\text { reject } \mathrm{H}_{0} \text { if } G>\chi_{\alpha}^{2}\left(\operatorname{dim}(V)-\operatorname{dim}\left(V_{0}\right)\right)
$$

Assessing the Model

- Functional form:
- Group plots
- Likelihood ratio tests
- Overall Performance
- Classification Accuracy
- Area under ROC Curve

Classification Accuracy

- Choose a cutoff value, and use the classification rule
- If $\hat{\pi}_{i}>$ cutoff, then $\hat{Y}_{i}=1$
- If $\hat{\pi}_{i}<$ cutoff, then $\hat{Y}_{i}=0$.
- The classification accuracy is percentage of observations that were correctly classified (percentage of cases where $Y_{i}=\hat{Y}_{i}$).

$$
\text { Classification Accuracy }=P\left(Y_{i}=\hat{Y}_{i}\right)
$$

- To optimize classification accuracy, a reasonable cutoff to use is 0.5.

Sensitivity and Specificity

- Sensitivity $=P\left(\hat{Y}_{i}=1 \mid Y_{i}=1\right)$
- Specificity $=P\left(\hat{Y}_{i}=0 \mid Y_{i}=0\right)$

Variable Selection

- Manually
- Stepwise
- Best subsets

Outline

(1) Logistic Regression

(2) Discriminant Analysis

Discriminant Analysis

- Used when output variable Y is categorical.
- Assume Y is categorical with possible values $0, \ldots, k$.
- Let X be a vector of input variables.
- Given an observation $X=x$, we want to predict the value of Y.
- Can also be viewed as a classification problem.

Example

- $Y=$ grade in Biol $120(Y=1$ or $Y=0)$
- $X=$ student's high school rank $(0 \leq X \leq 1)$
- Y is a discrete random variable.
- It has a p.m.f.

$$
f(y)=P(Y=y), \text { for } y=0, \ldots, k
$$

- For each value of Y, the vector X has a conditional distribution given by

$$
f(x \mid y)
$$

- The conditional p.m.f. of Y given $X=x$ is

$$
P(Y=y \mid X=x)=f(y \mid x)=\frac{f(x, y)}{f(x)}=\frac{f(y) f(x \mid y)}{\sum_{y=0}^{k} f(y) f(x \mid y)}
$$

- The conditional p.m.f. of Y given $X=x$ is

$$
P(Y=y \mid X=x)=f(y \mid x)=\frac{f(x, y)}{f(x)}=\frac{f(y) f(x \mid y)}{\sum_{y=0}^{k} f(y) f(x \mid y)}
$$

- Given the observation $X=x$, we predict Y will be equal to the value of y maximizing $f(y) f(x \mid y)$.

Discriminant Analysis with Multivariate Normal Predictor

- Given $Y=y, X \sim N\left(\mu_{y}, \Sigma_{y}\right)$, for $y=0, \ldots, k$.

$$
f(x \mid y)=(2 \pi)^{-p / 2}\left|\Sigma_{y}\right|^{-1 / 2} \exp \left\{-\frac{1}{2}\left(x-\mu_{y}\right)^{\prime} \Sigma_{y}^{-1}\left(x-\mu_{y}\right)\right\}
$$

- If $X=x$, we predict Y will be equal to the value of y minimizing

$$
d_{y}^{2}(x)=-2 \ln [f(y)]+\ln \left|\Sigma_{y}\right|+\left(x-\mu_{y}\right)^{\prime} \Sigma_{y}^{-1}\left(x-\mu_{y}\right)
$$

- In practice, we would use

$$
\hat{d}_{y}^{2}(x)=-2 \ln [\widehat{f(y)}]+\ln \left|S_{y}\right|+\left(x-\bar{x}_{y}\right)^{\prime} S_{y}^{-1}\left(x-\bar{x}_{y}\right)
$$

- In practice, we would use

$$
\hat{d}_{y}^{2}(x)=-2 \ln [\widehat{f(y)}]+\ln \left|S_{y}\right|+\left(x-\bar{x}_{y}\right)^{\prime} S_{y}^{-1}\left(x-\bar{x}_{y}\right)
$$

- How can we estimate these quantities?
- Assume we have observations for Y_{i} and X_{i}, for $i=1, \ldots, n$.

$$
\widehat{f(y)}=\frac{\text { Number of times } Y_{i}=y}{n}
$$

Sample Mean and Covariance Matrix

- Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ be observations from $N(\mu, \Sigma)$.
- The estimate for the mean μ is the sample mean \bar{x}.

$$
\hat{\mu}=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- The estimate for the covariance matrix Σ is the empirical covariance matrix S.

$$
\hat{\Sigma}=S=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\prime}
$$

- If X is a matrix whose rows are x_{1}, \ldots, x_{n} then \bar{x} and S can be obtained with the R commands colMeans (X) and cov(X).
- In practice, we would use

$$
\hat{d}_{y}^{2}(x)=-2 \ln [\widehat{f(y)}]+\ln \left|S_{y}\right|+\left(x-\bar{x}_{y}\right)^{\prime} S_{y}^{-1}\left(x-\bar{x}_{y}\right)
$$

- For each y, set aside all rows of data where $Y_{i}=y$.
- \bar{x}_{y} and S_{y} are the sample mean and covariance matrix for the vectors x_{i} from these rows of data.
- For each y, let $x_{y 1}, \ldots, x_{y n_{y}}$ be the values of X_{i} for those subjects with $Y_{i}=y$.

Highschool Rank and Biol 120 Grade

```
trank=rank[1:2000]
tgrade=grade [1:2000]
vrank=rank[2001:3146]
vgrade=grade[2001:3146]
L=groupplot(trank,tgrade, 20)
plot(L$x,L$g)
```


model=glm(tgrade~trank,family=binomial)
betahat=coef (model)
$x=(1: 100) / 100$
lines (x,betahat[1]+betahat[2]*x, col='red')

model2=glm(tgrade~trank+I (trank^2), family=binomial) betahat $2=\operatorname{coef}(\operatorname{model} 2)$
lines (x,betahat2[1]+betahat2[2]*x

$$
\left.+ \text { betahat } 2[3] \star x^{\wedge} 2, \operatorname{col}=^{\prime} r e d^{\prime}\right)
$$

model3=glm(tgrade~trank+I (trank^2)
+I(trank^3), family=binomial)
betahat3=coef(model3)
lines (x,betahat 3[1] +betahat3[2] *x
+betahat3[3]*x^2+betahat3[4]*x^3, col='red')

Model with 4th Order Term

Likelihood Ratio Tests

Console ~/

```\(>\) LRtest (mode1,mode12)[1] 5.34558e-11\(>\) LRtest (mode12, mode13)
\[
[1] \quad 0.0006829123
\]
\[
\geq \text { LRtest }(\operatorname{mode} 13, \operatorname{mode} 14)
\]
\[
\text { [1] } 0.9089255
\]
\[
>
\]
```


Model Validation

- For $i=2001, \ldots, 3146$, we predict $\hat{Y}_{i}=1$ if $\hat{\pi}_{i} \geq \frac{1}{2}$.
- $\hat{\pi}_{i} \geq \frac{1}{2}$ iff $g\left(x_{i}\right) \geq 0$.

$$
g(x)=-2.89+11.63 x-24.19 x^{2}+18.92 x^{3}
$$

- $g\left(x_{i}\right) \geq 0$ iff $x \geq .71929$

Classification Accuracy

```
vrank=rank[2001:3146]
vgrade=grade[2001:3146]
vgradehat=(vrank>=.71929)*1
mean(vgradehat==vgrade)
```


Classification Accuracy $=P\left(Y_{i}=\hat{Y}_{i}\right)=0.699$

HS Rank and Biol 120 Grade with Discriminant Analysis

If $X=x$, we predict Y will be equal to the value of y minimizing

$$
\hat{d}_{y}^{2}(x)=-2 \ln [\widehat{f(y)}]+\ln \left|S_{y}\right|+\left(x-\bar{x}_{y}\right)^{\prime} S_{y}^{-1}\left(x-\bar{x}_{y}\right)
$$

rank $0=$ trank [tgrade==0]
rank1=trank[tgrade==1]

```
n0=length(rank0)
n1=length(rank1)
f0=n0/(n0+n1)
f1=n1/(n0+n1)
```

If $X=x$, we predict Y will be equal to the value of y minimizing

$$
\hat{d}_{y}^{2}(x)=-2 \ln [\widehat{f(y)}]+\ln \left|S_{y}\right|+\left(x-\bar{x}_{y}\right)^{\prime} S_{y}^{-1}\left(x-\bar{x}_{y}\right)
$$

```
rank0=trank[tgrade==0]
rank1=trank[tgrade==1]
xbar0=mean(rank0)
xbar1=mean(rank1)
s0=sd(rank0)
s1=sd(rank1)
```

If $X=x$, we predict Y will be equal to the value of y minimizing

$$
\hat{d}_{y}^{2}(x)=-2 \ln [\widehat{f(y)}]+\ln \left|S_{y}\right|+\left(x-\bar{x}_{y}\right)^{\prime} S_{y}^{-1}\left(x-\bar{x}_{y}\right)
$$

```
allranks=(1:1000)/1000
d0=-2*log(f0)+log(s0^2)+(allranks-xbar0)^2/s0^2
d1=-2*log(f1)+log(s1^2)+(allranks-xbar1)^2/s1^2
```

cbind(allranks,d0,d1,d0<d1)

$[643]$,	0.643	-1.9274647498	-1.868919021	1
$[644]$,	0.644	-1.9235675598	-1.874871637	1
$[645]$,	0.645	-1.9196068876	-1.880758028	1
$[646]$,	0.646	-1.9155827331	-1.886578196	1
$[647]$,	0.647	-1.9114950963	-1.892332140	1
$[648]$,	0.648	-1.9073439772	-1.898019860	1
$[649]$,	0.649	-1.9031293759	-1.903641356	0
$[650]$,	0.650	-1.8988512923	-1.909196628	0
$[651]$,	0.651	-1.8945097264	-1.914685677	0
$[652]$,	0.652	-1.8901046782	-1.920108501	0
$[653]$,	0.653	-1.8856361478	-1.925465101	0
$[654]$,	0.654	-1.8811041351	-1.930755478	0

Discr. Analysis Optimal Cutoff $=0.649$

Cross-validation for Discriminant Analysis

```
vgradehat=(vrank>=.649)*1
mean(vgradehat==vgrade)
```

Classification Accuracy $=P\left(Y_{i}=\hat{Y}_{i}\right)=0.702$

"Brute Force" Approach

```
allranks=(1:1000)/1000
classacc=1:1000
for(i in 1:1000){
    tempgradehat=(trank>=allranks[i]) *1
    classacc[i]=mean(tempgradehat==tgrade)
}
max(classacc)
allranks[classacc==max(classacc)]
```

Optimal Cutoffs $=(.717, .719, .720, .721)$
Optimal Cutoffs $=.7195$

Additional Reading

- Hosmer, D.W. (2000). Applied Logistic Regression, 2nd ed. Wiley-Interscience, New York, N.Y.
- Khattree, R. and Naik, D.N. (1999) Applied Multivariate Statistics with SAS Software, 2nd ed. SAS Institute Inc., Cary, N.C.
- Khattree, R. and Naik, D.N. (2000) Multivariate Data Reduction and Discrimination with SAS Software SAS Institute Inc., Cary, N.C.

