Math 5305 Notes Principal Components

Jesse Crawford

Department of Mathematics Tarleton State University

2

- Two variables X₁ and X₂
- Scatterplot:

(Tarleton State University)

æ

Typical Coordinate System

(Tarleton State University)

2

Principal Components

(Tarleton State University)

4 / 1

æ

Principal Components

Definition

Consider a *p*-dimensional random vector X with covariance matrix
 Σ. Assume Σ is positive definite.

Define

$$\lambda_1 = \max\{ \operatorname{Var}(a'X) \mid a \in \mathbb{R}^p, a'a = 1 \}.$$

• The vector *a*₁ where this maximum is attained is called the *first principal component*.

Define

$$\lambda_2 = \max\{ \operatorname{Var}(a'X) \mid a \in \mathbb{R}^p, a'a = 1, \operatorname{cov}(a'X, a'_1X) = 0 \}.$$

• The vector *a*₂ where this maximum is attained is called the *second principal component*.

Definition

Define

$$\lambda_j = \max\{ \text{Var}(a'X) \mid a \in \mathbb{R}^p, a'a = 1, \\ \text{cov}(a'X, a'_k X) = 0, k = 1, \dots, j-1 \}.$$

- The vector *a_j* where this maximum is attained is called the *jth principal component*.
- There are *p* principle components *a*₁,..., *a_p*, and λ_j = Var(*a'_jX*) for each *j*.

イロト イポト イヨト イヨ

 $\operatorname{cov}(a'X,b'X) = a'\Sigma b$ $\operatorname{Var}(a'X) = a'\Sigma a$

$$\lambda_j = \max\{ \text{Var}(a'X) \mid a \in \mathbb{R}^p, a'a = 1, \\ \text{cov}(a'X, a'_k X) = 0, k = 1, \dots, j-1 \}.$$

$$\lambda_j = \max\{a' \Sigma a \mid a \in \mathbb{R}^p, a'a = 1, \\ a' \Sigma a_k = 0, k = 1, \dots, j-1\}.$$

(Tarleton State University)

æ

Theorem

- Let $\lambda_1 \geq \cdots \geq \lambda_p > 0$ be the eigenvalues of Σ .
- Let a_1, \ldots, a_p be the corresponding orthonormal eigenvectors.
- Then the principal components are a₁,..., a_p, and λ_j = Var(a'_jX) for each j.

Spectral Theorem: Every real, symmetric matrix has an orthonormal eigenbasis.

$$(a_1 \cdots a_p)' \Sigma(a_1 \cdots a_p) = \left(egin{array}{cc} \lambda_1 & & 0 \ & \ddots & \ 0 & & \lambda_p \end{array}
ight)$$

Implementation in R

```
Console ~/ 🔿
> \times = cbind(x1, x2)
> S=cov(X)
> 5
         X1
                    x2
x1 25.06959 10.262922
x2 10.26292 4.375917
> eigen(S)
$values
[1] 29.2961784 0.1493335
$vectors
                       [,2]
            [,1]
[1,] -0.9246567 0.3808018
[2,] -0.3808018 -0.9246567
> v1=eigen(S)$vectors[,1]
> v2=eigen(S)$vectors[,2]
> \sqrt{1}
[1] -0.9246567 -0.3808018
> \sqrt{2}
[1] 0.3808018 -0.9246567
>
```

R Provides Orthonormal Eigenvectors

(Tarleton State University)

2

Scatterplot with Principal Components

plot(x1,x2,asp=1)
lines(xrange,v1[2]/v1[1]*xrange,col='red')
lines(xrange,v2[2]/v2[1]*xrange,col='red')

Non-centered data will require intercept terms.

(Tarleton State University)

Principal Components

• Last example: $\lambda_1 = 29.3$ and $\lambda_2 = 0.15$.

Total Variance = trace(S) = $\lambda_1 + \lambda_2 = 29.5$

Principal Component	% of Variance	Cumulative % of Var
<i>a</i> ₁	99.5%	99.5%
a ₂	0.5%	100%

 Rule of thumb: We can reduce the number of principal components to a set accounting for 90% or more of the total variance.

- It is often better to start with a correlation matrix instead of a covariance matrix so that each variable has comparable variability (R command: cor(X)).
- PCA can be used to reduce the dimension of a data set.
- It can be used to identify size and shape factors for biological organisms or other objects.
- Can be used to reduce variables in a regression model to avoid multicollinearity.
- Warning: principal components explaining over 90% of total variance may not be the best set of predictors, so one should remove the minimal number of principal components required to avoid multicollinearity.