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@ Two variables X; and X5

@ Scatterplot:
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Typical Coordinate System
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Principal Components
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Principal Components

Definition
@ Consider a p-dimensional random vector X with covariance matrix
Y. Assume X is positive definite.

@ Define

A =max{Var(d@X) | ac RP, da=1}.

@ The vector a; where this maximum is attained is called the first
principal component.

@ Define

Ao = max{Var(a@ X) | ac RP,da=1,cov(d X, d,X) = 0}.

@ The vector a> where this maximum is attained is called the second
principal component.

v
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Principal Components (cont.)

Definition
@ Define

A = max{Var(dX) |ac RP,da=1,
cov(@X,aX)=0,k=1,....j—1}.

@ The vector a; where this maximum is attained is called the jth
principal component.

@ There are p principle components ay, ..., ap, and \; = Var(a}X)
for each j.
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Converting to Linear Algebra

cov(d X, b'X) =4dxb
Var(a X) = d%¥a

Aj=max{Var(dX) |ac RP,da=1,
cov(@X,aX)=0,k=1,...,j—1}.

N =max{aXalaeRP, da=1,
aya,=0k=1,....j—1}
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Relation to Eigenvectors and Eigenvalues

Theorem
@ Let\y > --- > \p > 0 be the eigenvalues of ¥.
@ Letay,...,ap be the corresponding orthonormal eigenvectors.
@ Then the principal components are ay, ..., 8p, and \; = Var(aj’-X )
for each j.

Spectral Theorem: Every real, symmetric matrix has an orthonormal
eigenbasis.
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Implementation in R
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Console -/
 wW=chind(xl, =20
= S=Cov ()
= 5
xl ne
¥1 25.06959 10,262922
x2 10, 26292 4375917
> eigen(s)
tvalues
[1] 29.2961784 0.1493335

$vectors

[,11] [,2]
[1.] -0.9248587 0.3803018
[2,] -0.3B8080138 -0.9246567

= wl=eigen{si$vectars[,1]
= w2=eigen{si$vectars[, 2]
>l

[1] -0.9246567 -0.3808018
R

[1] 0©0.3808018 -0.9246567
}
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R Provides Orthonormal Eigenvectors
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Console -/
o o L R <

(1]
[1.1] 1
= Ty 2 %Ny 2

(1]
[1,1] 1
N o T R

[,1]

[1,] -2.3554292-17
=
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Scatterplot with Principal Components

plot (x1,x2,asp=1)

lines (xrange,vl1[2]/v1[1l]*xrange,col="red’)
lines (xrange,v2[2]/v2[1]*xrange,col="red’)

Non-centered data will require intercept terms.
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Dimension Reduction

@ Last example: Ay =29.3 and A\, = 0.15.

Total Variance = trace(S) = A\ + \» =29.5

Principal Component | % of Variance | Cumulative % of Var
ai 99.5% 99.5%
a 0.5% 100%

@ Rule of thumb: We can reduce the number of principal
components to a set accounting for 90% or more of the total
variance.

(Tarleton State University) Principal Components 12/1



Applications

@ It is often better to start with a correlation matrix instead of a
covariance matrix so that each variable has comparable variability
(R command: cor (X)).

@ PCA can be used to reduce the dimension of a data set.

@ It can be used to identify size and shape factors for biological
organisms or other objects.

@ Can be used to reduce variables in a regression model to avoid
multicollinearity.

@ Warning: principal components explaining over 90% of total
variance may not be the best set of predictors, so one should
remove the minimal number of principal components required to
avoid multicollinearity.
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