Math 5301 Homework 13

1. The number of emissions from a radioactive sample in a fixed time period is sometimes modeled using a poisson distribution. Suppose a researcher records the number of emissions in 200 one-minute time periods, and the data is summarized in the following table.

Number of Emissions	0	1	2	3	4	5	6	7	8	Total
Number of Time Periods	9	36	39	50	30	19	8	4	5	200

Test the null hypothesis that the number of emissions follows a Poisson distribution. Hints: The p.m.f. for the poisson distribution with parameter $\lambda>0$ is

$$
P(X=x)=f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \text { for } x=0,1,2, \ldots
$$

For this application, λ represents the average number of particle emissions in a one-minute period, so a good estimate for λ is

$$
\hat{\lambda}=\frac{\text { Total Number of Emissions }}{200}
$$

Because there are infinitely many possible values of X, the last cell in the table, corresponding to $X=8$, should be replaced by $X \geq 8$, and the probability for that cell will be $P(X \geq 8)$. This guarantees that the $p_{j}^{\star \prime}$ s will add up to 1 .
Then, to ensure $E_{j} \geq 5$, it would be best to combine $X=7$ and $X \geq 8$ into one cell for $X \geq 7$.
2. The effectiveness of a number of different media for the growth of diphtheria bacilli was investigated by the Communicable Disease Centre, U.S. Public Health Service. Specimens were taken from the throats of sixty-nine suspected cases, and each specimen was grown on each of four media A, B, C, D. In the table below, 1 denotes that growth occurred with that medium.

	Diphtheria Media			
Number of Cases	A	B	C	D
4	1	1	1	1
2	1	1	0	1
3	0	1	1	1
1	0	1	0	1
59	0	0	0	0
Column Totals	6	10	7	10

Test the null hypothesis that, for each specimen, the different media have the same growth probabilities.

