Math 5301 Homework 2

- 1. Consider the measurable space $(\mathbb{R}, \mathcal{B})$, where \mathcal{B} is the Borel σ -algebra on \mathbb{R} . Prove that the following sets are elements of \mathcal{B} :
 - (a) [a, b), for any real numbers a < b
 - (b) $[a, \infty)$, for any $a \in \mathbb{R}$
 - (c) ℕ
 - (d) Q
 - (e) The set of all irrational numbers in [0, 1].
- 2. Let μ be Lebesgue measure on $(\mathbb{R}, \mathcal{B})$, and find the Lebesgue measure of each of the sets listed in Problem 1.
- 3. Consider the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, and let μ be a measure on this space, such that $\mu(\{x\}) = 2^{-x}$, for all $x \in \mathbb{N}$.
 - (a) Prove that $\mu(\mathbb{N}) = 1$.
 - (b) Calculate $\mu(\{1, 2, 3\})$.
 - (c) Calculate $\mu(\{3, 4, 5, ...\})$.
- 4. Let $f: U \to V$, and let $A_i \subseteq V$, for $i = 1, 2, 3, \ldots$ Prove the following:
 - (a)

$$f^{-1}\left(\bigcup_{i=1}^{\infty} A_i\right) = \bigcup_{i=1}^{\infty} f^{-1}(A_i)$$

- (b) If A_1, A_2, \ldots are pairwise disjoint, then $f^{-1}(A_1), f^{-1}(A_2), \ldots$ are pairwise disjoint.
- 5. Let $(\Omega_1, \mathcal{F}_1, \mu)$ be a measure space and $(\Omega_2, \mathcal{F}_2)$ be a measurable space, and suppose $f : \Omega_1 \to \Omega_2$ is a measurable function. Prove that the following function is a measure on $(\Omega_2, \mathcal{F}_2)$:

$$\mu_f : \mathcal{F}_2 \to [0, \infty]$$
$$\mu_f(A) = \mu(f^{-1}(A))$$