Math 5364 Homework 11

Do p. $105(1,9,15)$ from Advanced Calculus by Folland.

1. Let $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{m}$, and $y \in \mathbb{R}^{n}$. Show that

$$
\frac{\partial}{\partial x} x^{\prime} A y=A y
$$

2. If $\Sigma \in \mathbb{R}^{n \times n}$ is symmetric, show that

$$
\frac{\partial}{\partial x} x^{\prime} \Sigma x=2 \Sigma x
$$

3. Let $X \in \mathbb{R}^{n \times p}$ be a full rank matrix, and let $Y \in \mathbb{R}^{n}$. Find the vector $\gamma \in \mathbb{R}^{p}$ that minimizes $\|Y-X \gamma\|^{2}$. (Note that this is not a Lagrange multipliers problem, because there is no constraint on γ.)
4. Bonus: Let $\Sigma_{11} \in \mathbb{R}^{p_{1} \times p_{1}}$ and $\Sigma_{22} \in \mathbb{R}^{p_{2} \times p_{2}}$ be positive definite matrices. Also, let $\Sigma_{12} \in \mathbb{R}^{p_{1} \times p_{2}}$ and define $\Sigma_{21}=\Sigma_{12}^{\prime}$. If

$$
c_{1}=\max \left\{x^{\prime} \Sigma_{12} y \mid x^{\prime} \Sigma_{11} x=1, y^{\prime} \Sigma_{22} y=1\right\},
$$

is attained at (x, y), show that

$$
\left(\begin{array}{cc}
-c_{1} \Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & -c_{1} \Sigma_{22}
\end{array}\right)\binom{x}{y}=0 .
$$

This is the main result from the theory of canonical correlations. This maximum is

$$
c_{1}=\max \left\{\operatorname{cov}\left(x^{\prime} U, y^{\prime} V\right) \mid \operatorname{Var}\left(x^{\prime} U\right)=1, \operatorname{Var}\left(y^{\prime} V\right)=1\right\},
$$

where U and V are random vectors with joint covariance matrix

$$
\operatorname{cov}\left[\binom{U}{V}\right]=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

