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Course Topics

Experimental Design
I Observational studies vs. experiments
I Randomization and blinding
I Confounding variables

Multiple linear regression model
I

Yi = β1Xi1 + · · ·+ βpXip + εi , for i = 1, . . . ,n.

I What are the underlying assumptions of this model?
I How can we test these assumptions?
I What goes wrong if the assumptions are violated?
I If the assumptions are valid, how can we estimate the model

parameters and perform hypothesis tests?
I Variable selection and model building.
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Logistic regression model
I Output is dichotomous (Yi = 0 or 1).
I

gi = β1Xi1 + · · ·+ βpXip

P[Yi = 1] =
egi

1 + egi
, for i = 1, . . . ,n.

Other Multivariate Analysis Techniques
I Principle components
I Canonical correlations
I Factor analysis
I Discriminant analysis
I Cluster analysis
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Skills used
I Critical thinking and reading
I Formal mathematics (rigorous proofs)
I Programming (in R and SAS)
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Outline

1 Probability

2 Statistics

3 Statistics, by Freedman, Pisani, and Purves
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Random Variables

Definition (Informal)
A random variable is a real number whose value is determined
randomly.
Random variables are usually denoted by capital letters,
X ,Y ,U,V , etc.

Definition
The support of a random variable is the set of all possible values of
that random variable.
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Discrete Random Variables

Definition
A random variable is called discrete if its support is countable (finite or
countably infinite).

Example
A football player attempts 10 field goals.
Let X be the number of successful attempts.
What is the support for X?
Is X a discrete random variable?

Example
Let X be the number of phone calls received by a company in one
hour.
What is the support for X?
Is X a discrete random variable?
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Probability Mass Functions

Definition
Suppose X is a discrete random variable.
The probability mass function for X is given by

f (x) = P[X = x ],

for each value of x in the support of X .

Example
A football player attempts 10 field goals.
The attempts are statistically independent, and
The probability of success on each attempt is 0.7.
Find the p.m.f. for X .
Find the probability that the player makes exactly 6 field goals.
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The Binomial Distribution

Definition
Let n be a positive integer, and let p ∈ [0,1].
The binomial distribution with parameters n and p is given by the
p.m.f.

f (x) =

(
n
x

)
px (1− p)n−x , x = 0,1, . . . ,n.

Parameters are constants related to a probability distribution.
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Figure: Binomial distribution with n = 10 and p = 0.7.

Figure: Binomial distribution with n = 100 and p = 0.2.
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Expected Value, Variance, and Standard Deviation

Definition
Let X be a random variable with p.m.f. f .
The expected value or mean of X is given by

E [X ] = µX =
∑
x∈R

xf (x).

The expected value is the “center of mass” of the distribution, and
it tells you the average value of the random variable.
The variance of X is

Var[X ] = σ2
X = E [(X − µX )2] = E [X 2]− E [X ]2.

The standard deviation of X is the square root of the variance,

σX =
√

Var[X ].
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The variance and standard deviation are measures of variation in
X .
The standard deviation provides a rough measure of the spread in
the distribution of X .
It is roughly the average distance from X to its mean.

EV and Variance for Binomial Distributions
Suppose X has a binomial distribution with parameters n and p.
Then

E [X ] = np, and

Var[X ] = np(1− p).
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Continuous Random Variables

Definition
Let X be a random variable, and suppose
f : R→ [0,∞), such that

P[a < X < b] =

∫ b

a
f (x) dx ,

for any a,b ∈ R, such that a < b.
Then X is called a continuous random variable, and
f is its probability density function.
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The Normal Distribution

Definition
Suppose µ ∈ R, and σ > 0.
The normal distribution with mean µ and standard deviation σ, is
given by

f (x) =
1√
2πσ

exp
{
−(x − µ)2

2σ2

}
, −∞ < x <∞.

Figure: Normal distribution with µ = 500 and σ = 100.
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Example

Suppose X ∼ N(500,1002).
Find P[400 < X < 600].
Find E [X ] and σX .

Proposition
Let X be a continuous random variable with p.d.f. f .
Then

E [X ] =

∫ ∞
−∞

xf (x) dx .

E [X 2] =

∫ ∞
−∞

x2f (x) dx .

Var[X ] = E [X 2]− E [X ]2
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Standard Normal Distribution

Definition
The normal distribution with mean µ = 0 and variance σ2 = 1
is called the standard normal distribution.
Standard normal random variables are usually denoted by Z .

Definition
Let Z be a standard normal random variable, and
let α ∈ (0,1).
We define zα to be the unique number such that

P[Z > zα] = α.

α zα/2
0.05 1.96
0.01 2.575
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The t-distribution

Definition
Let r be a positive integer.
The t-distribution with r degrees of freedom is given by

f (t) =
Γ((r + 1)/2)√
πrΓ(r/2)

1
(1 + t2/r)(r+1)/2 , −∞ < t <∞.

The t-distribution resembles the N(0,1) distribution, but with fatter
tails, and
the larger the degrees of freedom is, the closer the resemblance
is.
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Definition
Let T have a t-distribution with r degrees of freedom.
let α ∈ (0,1).
We define tα(r) to be the unique number such that

P[T > tα(r)] = α.

α zα/2
0.10 1.645
0.05 1.96
0.01 2.575

α tα/2(30)

0.10 1.697
0.05 2.042
0.01 2.750
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Point Estimation

Example
Suppose a radioactive sample emits particles, and
the waiting times between the emissions are
exponentially distributed with unknown mean θ.
Let X1, . . . ,Xn be an independent random sample of waiting times.
Find the best estimate for θ based on X1, . . . ,Xn.

Important Components of a Statistical Model
A population distribution f (x ; θ).
The unknown parameter θ.

I Parameters are numbers related to the population.
I They are constants (not random).

A random sample X1, . . . ,Xn.
I The Xi ’s are independent random variables.
I The distribution of each Xi is given by f (x ; θ).
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Maximum Likelihood Estimation

Definition
The likelihood function for a statistical model with population
distribution f (x ; θ) is

L(θ, x1, . . . , xn) = f (x1; θ) · · · f (xn; θ).

The maximum likelihood estimator (MLE) for θ based on the
sample X1, . . . ,Xn is the value of θ that maximizes L(θ,X1, . . . ,Xn).
The MLE is usually denoted by θ̂.
The MLE is a function of the sample.
The MLE is a random variable.
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Point Estimation for the Normal Distribution
Consider a random sample X1, . . . ,Xn from a N(µ, σ2) population.
The MLEs for µ and σ2 are

µ̂ = X =
1
n

n∑
i=1

Xi , and

σ̂2 =
1
n

n∑
i=1

(Xi − X )2.

Because σ̂2 is biased, the following estimator is preferred,

s2 =
1

n − 1

n∑
i=1

(Xi − X )2.

In other words, the population mean and variance are estimated
by the sample mean and variance.
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Test Statistics for the Normal Distribution

Proposition

Consider a random sample X1, . . . ,Xn from a N(µ, σ2) population.

Z =
X − µ
σ/
√

n
∼ N(0,1).

T =
X − µ
s/
√

n
∼ t(n − 1).
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The Central Limit Theorem

Theorem (5.6-1)
Suppose X1,X2, . . . is a sequence of IID random variables,
from a distribution with finite mean µ
and finite positive variance σ2.
Let X = 1

n
∑n

i=1 Xi , for n = 1,2, . . .
Then, as n→∞,

X − µ
σ/
√

n
=

∑n
i=1 Xi − nµ√

nσ
⇒ N(0,1).
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Informal Statement of CLT

Informal CLT
Suppose X1, . . . ,Xn is a random sample
from a distribution with finite mean µ
and finite positive variance σ2.
Then, if n is sufficiently large,

X ≈ N(µ, σ2/n), and

n∑
i=1

Xi ≈ N(nµ,nσ2).

Conventionally, values of n ≥ 30 are usually considered
sufficiently large, although this text applies the approximation for
lower values of n, such as n ≥ 20.
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Finite Population Correction Factor

Suppose X1, . . . ,Xn is a random sample
from a finite population with finite mean µ
and finite positive variance σ2.
Assume the population size is N.
Then, if n is sufficiently large,

X ≈ N
(
µ,
σ2

n
N − n
N − 1

)
.
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Confidence Intervals
Let α ∈ (0,1) (for example α = 0.05).
Then a 1− α confidence interval for µ is(

X − zα/2
σ√
n
,X + zα/2

σ√
n

)
.

This random interval will contain the unknown mean µ with
probability 1− α.
If α = 0.05, this is a 95% confidence interval, and the probability it
contains µ is 95%.
Alternative way of writing the confidence interval:

X ± zα/2
σ√
n

A more useful confidence interval is

X ± tα/2(n − 1)
s√
n
.
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Hypothesis Testing

Example
Suppose Math SAT scores at a certain university are normally
distributed with unknown mean µ and unknown variance σ2.
Consider the hypothesis testing problem

H0 : µ = 500 vs. H : µ 6= 500.

How can we address this problem using a random sample
X1, . . . ,Xn of n students’ Math SAT scores?

Type I error: Rejecting H0 when it is true.
Type II error: Not rejecting H0 when it is false.
Can’t control the probabilities of both types of errors.
Instead, we choose α ∈ (0,1), called the significance level,
and require P[Type I error] ≤ α.
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Hypothesis Testing for the Normal Distribution

Suppose X1, . . . ,Xn is a random sample from a N(µ, σ2)
population.
Let µ0 ∈ R, and consider the testing problem

H0 : µ = µ0 vs. H : µ 6= µ0.

Testing procedure: reject H0 if |Z | ≥ zα/2, where

Z =
X − µ0

σ/
√

n
.

A more useful procedure is to reject H0 if |T | ≥ tα/2(n − 1), where

T =
X − µ0

s/
√

n
.
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p-values

Once a sample has been collected and a test statistic has been
calculated, the p-value of the test can also be calculated.

Definition
The p-value is the probability of obtaining a test statistic at least as
extreme as the one that was actually observed, assuming the null
hypothesis is true.

This allows for a simple test procedure: reject H0 if the p-value is less
than α.
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Related Reading

Probability and Statistical Inference, 8th ed., by Hogg and Tanis.
My Math 311 and Math 411 notes cover these concepts in much
more detail.
Introduction to Mathematical Statistics, by Hogg, McKean, and
Craig, for a more rigorous treatment of the same concepts.
Probability and Measure, by Billingsley, for an excellent
measure-theoretic treatment of probability.
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Confounding Variables

Definition
Suppose you are investigating the relationship between the
variables X and Y .
A confounding variable is a third variable Z that is related to both
X and Y , creating the illusion of a causal relationship between X
and Y when there isn’t one.

Example
Men who drink alcohol have higher lung cancer rates.
Is this strong evidence that alcohol causes cancer?
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“Post hoc ergo propter hoc” fallacy
“After this, therefore because of this”

Example
Stimulus package in 2009.
What was the effect on unemployment?
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Randomized Controlled Experiments

When studying the effect of a treatment, it is necessary to
compare a treatment group, who receives the treatment, to a
control group, who does not.
Subjects should be divided between the treatment group and
control group randomly.
Blinding should be used when appropriate.
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Let p1 and p2 be two population proportions, and consider

H0 : p1 = p2 vs. H1 : p1 6= p2.

Let p̂1 = Y1/n1 and p̂2 = Y2/n2 be corresponding sample
proportions based on independent samples of sizes n1 and n2,
respectively.
Also, assume that both ni p̂i ≥ 5 and ni(1− p̂i) ≥ 5, for i = 1,2.
Decision rule:

Reject H0 if |Z | ≥ zα/2, where

Z =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

) , and

p̂ =
Y1 + Y2

n1 + n2
.
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Observational Studies

Definition
Controlled Experiment: a study where the investigator assigns
subjects to treatment and control groups.
Observational Study: a study where the investigator does not
interact with the subjects being studied. The investigator simply
analyzes existing data.

Example
Smokers (treatment group): higher rates of lung cancer
Nonsmokers (control group): lower rates of lung cancer
Is this a controlled experiment or observation study?
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Observational studies can benefit from the use of homogenous
classes.
Example: comparing lung cancer rates for male smokers of age
55-59 to lung cancer rates for male nonsmokers of age 55-59.

Definition
Controlling for a variable means including that variable in a study
so it does not distort the relationship between the primary
variables being studied.
In the above smoking/lung cancer study, we are controlling for
gender and age.
Using homogenous classes is one way to control for variables.
Another method is to include those variables in a statistical model.
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Pitfalls of Uncritical Reading

Example
“In a study of clofibrate, 15% of those taking the drug died within the 5
year study, while 25% of those not taking the drug died during the
study.”

Example
“In a study of Pellagra, the disease was linked to the presence of the
blood-sucking fly Simulium.”
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Example
“In a recent study, it was found that babies exposed to ultrasound in
the womb had lower birthweight, on average, than those who were not
exposed.”

Example
“A study of U.C. Berkeley admissions showed that, over a certain time
period, 44% of male applicants were admitted to the graduate school,
and only 35% of female applicants were admitted to the graduate
school.”

(Tarleton State University) Introduction 41 / 41


	Probability
	Statistics
	Statistics, by Freedman, Pisani, and Purves

