Bag of Words Meets Bags of Popcorn Sentiment Analysis via Text Mining and Natural Language Processing

John Koo

Tarleton State University

July 16, 2015

John Koo Bag of Words Meets Bags of Popcorn

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Data Description

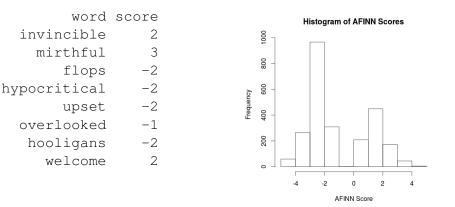
John Koo Bag of Words Meets Bags of Popcorn

くヨ→

æ

Sentiment Score Bag of Words tf-idf NDSI

AFINN List

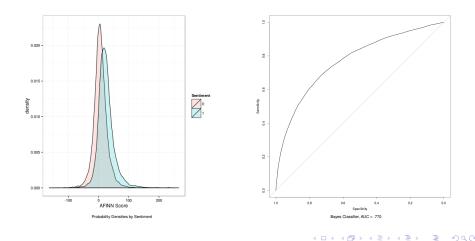


▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Sentiment Score Bag of Words tf-idf

AFINN Score



John Koo Bag of Words Meets Bags of Popcorn

Sentiment Score Bag of Words tf-idf NDSI

Bag of Words

 Count up the number of times each term occurs in a review

	no	good	war	great	bad	
Review 1	8	0	1	0	3	
Review 2	2	0	1	1	0	
Review 3	4	1	0	0	1	
Review 4	4	1	0	1	0	
Review 5	4	0	0	0	0	
Review 6	3	3	0	0	1	
:	:		÷	:	:	•••

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

John Koo Bag of Words Meets Bags of Popcorn

Sentiment Score Bag of Words tf-idf NDSI

Bag of Words

- Count up the number of times each term occurs in a review
- Using AFINN list to start

	no	good	war	great	bad	
Review 1	8	0	1	0	3	
Review 2	2	0	1	1	0	
Review 3	4	1	0	0	1	
Review 4	4	1	0	1	0	
Review 5	4	0	0	0	0	
Review 6	3	3	0	0	1	
:	:	÷	:	:		•••

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Sentiment Score Bag of Words tf-idf NDSI

Bag of Words

- Count up the number of times each term occurs in a review
- Using AFINN list to start

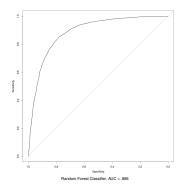
	no	good	war	great	bad	
Review 1	8	0	1	0	3	
Review 2	2	0	1	1	0	
Review 3	4	1	0	0	1	
Review 4	4	1	0	1	0	
Review 5	4	0	0	0	0	
Review 6	3	3	0	0	1	
:	:	÷	:	:		•••

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Sentiment Score Bag of Words tf-idf NDSI

Bag of Words



John Koo Bag of Words Meets Bags of Popcorn

Sentiment Score Bag of Words tf-idf NDSI

Text Frequency–Inverse Document Frequency

 Compare a term's relevance in a document to the inverse of its relevance in a collection of documents

John Koo Bag of Words Meets Bags of Popcorn

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

э

Sentiment Score Bag of Words tf-idf NDSI

Text Frequency–Inverse Document Frequency

- Compare a term's relevance in a document to the inverse of its relevance in a collection of documents
- The more frequently a term occurs in a document, the more relevant it is to that document

・ 戸 ト ・ 三 ト ・ 三 ト

Sentiment Score Bag of Words tf-idf NDSI

Text Frequency–Inverse Document Frequency

- Compare a term's relevance in a document to the inverse of its relevance in a collection of documents
- The more frequently a term occurs in a document, the more relevant it is to that document
- The more frequently a term occurs in a collection of documents, the less relevant it is to each document in the collection

・ 戸 ト ・ 三 ト ・ 三 ト

Sentiment Score Bag of Words tf-idf NDSI

Text Frequency–Inverse Document Frequency

tf(t, d) = n(t|d)

John Koo Bag of Words Meets Bags of Popcorn

< 日 > < 回 > < 回 > < 回 > < 回 > <

æ

Sentiment Score Bag of Words tf-idf NDSI

Text Frequency–Inverse Document Frequency

$$tf(t,d) = n(t|d)$$

$$\mathit{idf}(t,D) = \log rac{|D|}{|\{d \in D : t \in d\}|}$$

John Koo Bag of Words Meets Bags of Popcorn

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

æ

Sentiment Score Bag of Words tf-idf NDSI

Text Frequency–Inverse Document Frequency

$$tf(t,d) = n(t|d)$$

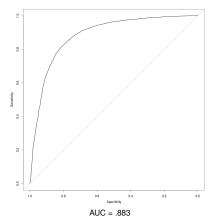
$$idf(t, D) = \log \frac{|D|}{|\{d \in D : t \in d\}|}$$
$$tfidf(t, d, D) = tf(t, d) \times idf(t, D)$$

John Koo Bag of Words Meets Bags of Popcorn

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sentiment Score Bag of Words tf-idf NDSI

Text Frequency–Inverse Document Frequency



John Koo Bag of Words Meets Bags of Popcorn

< ∃⇒

< 一型

æ

Sentiment Score Bag of Words tf-idf NDSI

Feature Extraction

 A priori feature extraction tends to perform poorly for simple analyses

< 日 > < 回 > < 回 > < 回 > < 回 > <

æ

Sentiment Score Bag of Words tf-idf NDSI

Feature Extraction

- A priori feature extraction tends to perform poorly for simple analyses
- It's typically better to learn features from the data themselves

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Sentiment Score Bag of Words tf-idf NDSI

Term Frequency

Word	Frequency
movie	125,307
film	113,054
one	77,447
like	59,147
just	53,132
good	43,279

John Koo Bag of Words Meets Bags of Popcorn

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Sentiment Score Bag of Words tf-idf NDSI

Difference in Term Frequencies

Word	Freq (Pos)	Freq (Neg)	Difference
movie	18,139	23,668	5,529
bad	1,830	7,089	5,259
great	6,294	2,601	3,693
just	7,098	10,535	3,437
even	4,899	7,604	2,705
worst	246	2,436	2,190
:	:		

John Koo Bag of Words Meets Bags of Popcorn

Sentiment Score Bag of Words tf-idf NDSI

Normalized Difference Sentiment Index

$$NDSI := \frac{n(t|1) - n(t|0)}{n(t|1) + n(t|0)}$$

John Koo Bag of Words Meets Bags of Popcorn

Sentiment Score Bag of Words tf-idf NDSI

Normalized Difference Sentiment Index

$$NDSI := \frac{(n(t|1) + \alpha) - (n(t|0) + \alpha)}{(n(t|1) + \alpha) + (n(t|0) + \alpha)}$$

John Koo Bag of Words Meets Bags of Popcorn

Sentiment Score Bag of Words tf-idf NDSI

Normalized Difference Sentiment Index

$$NDSI := \frac{n(t|1) - n(t|0)}{n(t|1) + n(t|0) + 2\alpha}$$

John Koo Bag of Words Meets Bags of Popcorn

Sentiment Score Bag of Words tf-idf NDSI

Normalized Difference Sentiment Index

$$NDSI := \frac{|n(t|1) - n(t|0)|}{n(t|1) + n(t|0) + 2\alpha}$$

John Koo Bag of Words Meets Bags of Popcorn

Sentiment Score Bag of Words tf-idf NDSI

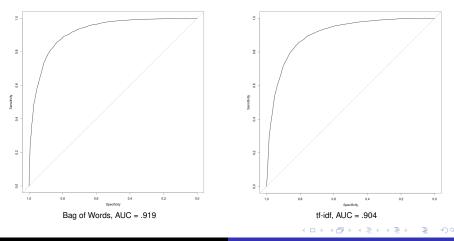
Normalized Difference Sentiment Index

Word	Freq (Pos)	Freq (Neg)	Difference	NDSI
worst	246	2,436	2,190	.745
waste	94	1,351	1,257	.739
poorly	0	620	620	.708
lame	0	618	618	.691
awful	159	1,441	1,282	.691
mess	0	498	498	.660
:				:

John Koo Bag of Words Meets Bags of Popcorn

Sentiment Score Bag of Words tf-idf NDSI

Normalized Difference Sentiment Index



John Koo Bag of Words Meets Bags of Popcorn

Word2vec Doc2vec

- Vector representation of words
- word $\sim \overrightarrow{v}_i = [v_{i1}, v_{i2}, \dots, v_{iN}] \in V \subseteq \mathbb{R}^N$
- Relative word meanings reflected in vector representations

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

르

Word2vec Doc2vec

Word Vectors

 Distributional hypothesis: Two words appear in similar contexts iff they share similar meaning

크

Word2vec Doc2vec

Word Vectors

- Distributional hypothesis: Two words appear in similar contexts iff they share similar meaning
- Context similarity: If two words appear in similar contexts, then their vector representations are similar, i.e. P(V_i|c) ≈ P(V_i|c) ⇒ V_i ≈ V_i

(本部) (本語) (本語) (二語)

Word2vec Doc2vec

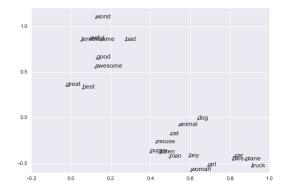
Word Vectors

- Distributional hypothesis: Two words appear in similar contexts iff they share similar meaning
- Context similarity: If two words appear in similar contexts, then their vector representations are similar, i.e. P(V_i|c) ≈ P(V_i|c) ⇒ V_i ≈ V_i
- Distributional hypothesis + context similarity =>>> If two words share similar meaning, then their vector representations are similar

(日) (圖) (E) (E) (E)

Word2vec Doc2vec

Word Vectors



John Koo Bag of Words Meets Bags of Popcorn

▲ロト▲御ト▲恵ト▲恵ト 恵 めんぐ

Word2vec Doc2vec

One Word Contexts (Bigrams)

Multinomial Logistic (Softmax) Regression

$$\blacktriangleright \ P(\overrightarrow{v_j} | \overrightarrow{v_i}) = \frac{e^{\overrightarrow{\beta_j} \cdot \overrightarrow{v_i}}}{\sum_{k}^{|v|} e^{\overrightarrow{\beta_k} \cdot \overrightarrow{v_i}}}$$

Generalizable into multi-word contexts

・ 戸 ト ・ 三 ト ・ 三 ト

Word2vec Doc2vec

Word Similarity

What do we mean by "similar"?

<ロ> <同> <同> < 同> < 同> < 同> 、

Word2vec Doc2vec

Word Similarity

- What do we mean by "similar"?
- Cosine Similarity

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

Word2vec Doc2vec

Word Similarity

- What do we mean by "similar"?
- Cosine Similarity
- $\operatorname{sim}(\overrightarrow{\mathbf{v}}_i, \overrightarrow{\mathbf{v}}_j) = \frac{\overrightarrow{\mathbf{v}}_i \cdot \overrightarrow{\mathbf{v}}_j}{\|\overrightarrow{\mathbf{v}}_i\| \|\overrightarrow{\mathbf{v}}_j\|}$

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Word2vec Doc2vec

Word Similarity

- What do we mean by "similar"?
- Cosine Similarity
- $sim(\overrightarrow{v}_i, \overrightarrow{v}_j) = \frac{\overrightarrow{v}_i \cdot \overrightarrow{v}_j}{\|\overrightarrow{v}_i\| \|\overrightarrow{v}_j\|}$
- In [16]: model.most_similar('physics')
- Out[16]: [(u'quantum', 0.5752027034759521), (u'laws', 0.45106104016304016), (u'scientific', 0.43514519929885864), (u'engineering', 0.4271385669708252), (u'gravity', 0.42456042766571045), (u'theory', 0.41807645559310913), (u'mechanics', 0.3903239369392395)]

Word2vec Doc2vec

 Relative meanings and word relationships preserved in vector representations

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

크

Word2vec Doc2vec

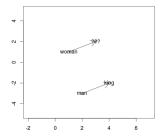
- Relative meanings and word relationships preserved in vector representations
- MAN : KING :: WOMAN : ???

< □ > < □ > < □ > .

Word2vec Doc2vec

 Relative meanings and word relationships preserved in vector representations

$$\overrightarrow{\mathbf{v}}_{king} - \overrightarrow{\mathbf{v}}_{man} \approx \overrightarrow{\mathbf{X}} - \overrightarrow{\mathbf{v}}_{woman}$$



< 3

크

Word2vec Doc2vec

MAN : KING :: WOMAN : ???

Word2vec Doc2vec

MAN : KING :: WOMAN : ???

```
In [17]: model.most similar(positive =
                               ['king', 'woman'],
                               negative = ['man'])
Out[17]: [(u'queen', 0.3589944541454315),
            (u'princess', 0.33725661039352417),
            (u'arthur', 0.2945181727409363),
            (u'mistress', 0.29320359230041504),
            (u'france', 0.2916792035102844),
            (u'lion', 0.29003939032554626),
            (u'throne', 0.2894885540008545),
            (u'kong', 0.2762626111507416),
            (u'kingdom', 0.26161640882492065),
            (u'prince', 0.26111793518066406)]
                                            ▲ 臣 ▶ 臣 • • • • •
```

Word2vec Doc2vec

Document Vectors

Combine word vectors into one document vector

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Word2vec Doc2vec

Document Vectors

- Combine word vectors into one document vector $\overrightarrow{}$
- $f({\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_k}) = \overrightarrow{d}$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

르

Word2vec Doc2vec

Document Vectors

- Combine word vectors into one document vector
- $f({\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_k}) = \overrightarrow{d}$
- Document vectors live in the same space as word vectors

・ロト ・四ト ・ヨト ・ヨト

Word2vec Doc2vec

Document Vectors

Combine word vectors into one document vector

•
$$f({\overrightarrow{v}_1, \overrightarrow{v}_2, \dots \overrightarrow{v}_k}) = \overrightarrow{d}$$

- Document vectors live in the same space as word vectors
- ► bad \approx not good $\implies \overrightarrow{v}_{\text{bad}} \approx \overrightarrow{v}_{\text{not good}}$

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

Word2vec Doc2vec

Document Vectors

Combine word vectors into one document vector

•
$$f({\overrightarrow{v}_1, \overrightarrow{v}_2, \dots \overrightarrow{v}_k}) = \overrightarrow{d}$$

- Document vectors live in the same space as word vectors
- ► bad \approx not good $\implies \overrightarrow{v}_{\text{bad}} \approx \overrightarrow{v}_{\text{not good}}$

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

Word2vec Doc2vec

Document Vectors

Combine word vectors into one document vector

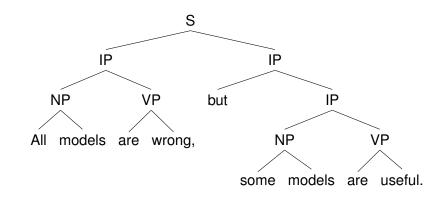
•
$$f({\overrightarrow{v}_1, \overrightarrow{v}_2, \dots \overrightarrow{v}_k}) = \overrightarrow{d}$$

- Document vectors live in the same space as word vectors
- ► bad \approx not good $\implies \overrightarrow{v}_{\text{bad}} \approx \overrightarrow{v}_{\text{not good}}$
- Syntax trees

・ロト ・四ト ・ヨト ・ヨト

Word2vec Doc2vec

Syntax Trees



・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

æ

Word2vec Doc2vec

References

- "Bag of Words Meets Bags of Popcorn." Kaggle. https://www.kaggle.com/c/word2vec-nlp-tutorial
- "AFINN list." F Nielson. The Technical University of Denmark. http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
- "Tf-idf Weighting." The Stanford Natural Language Processing Group. C Manning, P Raghavan. H Schütze, http://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
- "Deep Learning for Natural Language Processing (Without Magic)." R Socher, Y Bengio, C Manning. The Stanford Natural Language Processing Group. http://nlp.stanford.edu/courses/NAACL2013/
- "word2vec Parameter Learning Explained." X Rong. arXiv:1411.2738v1.

Thank you!

< 日 > < 回 > < 回 > < 回 > < 回 > <