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>

good | war | great | bad

[o]
i Review 1 8 0 1 0 3
» Count up the number of times  [Reviewz | 2 0] 1 1] 0
each term occurs in areview ~ |Review3| 4] 1] 0] 0] |
Review 4 | 4 1 0 1 0
Review 5 | 4 0 0 0 0
3 3 0 0 1
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Random Forest Classifier, AUC = 886
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Text Frequency—Inverse Document Frequency

» Compare a term’s relevance in a document to the inverse of its
relevance in a collection of documents
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Text Frequency—Inverse Document Frequency

» Compare a term’s relevance in a document to the inverse of its
relevance in a collection of documents

» The more frequently a term occurs in a document, the more
relevant it is to that document
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Text Mining

Text Frequency—Inverse Document Frequency

» Compare a term’s relevance in a document to the inverse of its
relevance in a collection of documents

» The more frequently a term occurs in a document, the more
relevant it is to that document

» The more frequently a term occurs in a collection of documents,
the less relevant it is to each document in the collection
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Text Frequency—Inverse Document Frequency

t(t, d) = n(t|d)
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Text Frequency—Inverse Document Frequency

t(t, d) = n(t|d)

D]
{d e D:ted}

idf(t, D) = log
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Text Frequency—Inverse Document Frequency

t(t, d) = n(t|d)

D]
{d e D:ted}

idf(t, D) = log

tidf(t, d, D) = tf(t, d) x idf(t, D)
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Text Frequency—Inverse Document Frequency

AUC = .883
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Feature Extraction

» A priori feature extraction tends to perform poorly for simple
analyses
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Text Mining

Feature Extraction

» A priori feature extraction tends to perform poorly for simple
analyses

» It’s typically better to learn features from the data themselves
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Term Frequency

Word | Frequency
movie 125,307

film 113,054
one 77,447
like 59,147

just 53,132
good 43,279
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Difference in Term Frequencies

Word | Freq (Pos) | Freq (Neg) | Difference
movie 18,139 23,668 5,529
bad 1,830 7,089 5,259
great 6,294 2,601 3,693
just 7,098 10,535 3,437
even 4,899 7,604 2,705
worst 246 2,436 2,190
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Normalized Difference Sentiment Index

n(t[1) — n(t|0)
n(t|1) + n(t|0) + 2«

NDSI .=

John Koo Bag of Words Meets Bags of Popcorn



Sentiment Score
Bag of Words
tf-idf

NDSI

Text Mining

Normalized Difference Sentiment Index

[n(t[1) — n(t|0)]
n(t|1) + n(t|0) + 2«

NDSI .=

John Koo Bag of Words Meets Bags of Popcorn



Text Mining

Sentiment Score

t-idf
NDSI

Bag of Words

Normalized Difference Sentiment Index

Word | Freq (Pos) | Freq (Neg) | Difference | NDSI
worst 246 2,436 2,190 | .745
waste 94 1,351 1,257 | .739
poorly 0 620 620 | .708
lame 0 618 618 | .691
awful 159 1,441 1,282 | .691
mess 0 498

498

.660
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Sensitviy
Sensitviy

Speciiciy specifciy

Bag of Words, AUC = .919 tf-idf, AUC = .904
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Word2vec

. 2
Natural Language Processing pOCaIes

Word Vectors

» Vector representation of words
» word ~ 7,‘ = [Vi1, Vi2, ..., Vin] € V CRN
» Relative word meanings reflected in vector representations
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Word2vec

Natural Language Processing Doc2vec

Word Vectors

» Distributional hypothesis: Two words appear in similar contexts iff
they share similar meaning
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Word2vec

Natural Language Processing Doc2vec

Word Vectors

» Distributional hypothesis: Two words appear in similar contexts iff
they share similar meaning

» Context similarity: If two words appear in similar contexts, then
their vector representations are similar, i.e.
P(Vilc)~ P(Vjlc) = Vi~V
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Word2vec

Natural Language Processing Doc2vec

Word Vectors

» Distributional hypothesis: Two words appear in similar contexts iff
they share similar meaning

» Context similarity: If two words appear in similar contexts, then
their vector representations are similar, i.e.
P(Vile) = P(Vjle) = Vi~V

» Distributional hypothesis + context similarity — If two words
share similar meaning, then their vector representations are
similar

John Koo Bag of Words Meets Bags of Popcorn



on

0.5

02

guage Processing

avorst

JeritvBghme  pad

Avesome

geat pest

ao 0z

Word2vec
Doc2vec

animal
£at
mouse
SUpRitEn
Jnan  boy HRE pane
ol druck
voman
04 06 o8

g of Words Meets




Word2vec

Natural Language Processing Doc2vec

One Word Contexts (Bigrams)

» Multinomial Logistic (Softmax) Regression
> P(?j‘?l) _ et

S

» Generalizable into multi-word contexts
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Word2vec

. Doc2
Natural Language Processing ocevee

Word Similarity

» What do we mean by “similar”?
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Word2vec

. Doc2
Natural Language Processing ocevee

Word Similarity

» What do we mean by “similar”?
» Cosine Similarity
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Word2vec

. Doc2
Natural Language Processing ocevee

Word Similarity

» What do we mean by “similar”?
» Cosine Similarity

. 71.7
> sim(V,, V)) = 20
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Natural Language Processing Doc2vec

Word Similarity

>

What do we mean by “similar”?

\4

Cosine Similarity
. o VY

Sim(Vi, V) = 17,1797

In [16]: model.most_similar (' physics’)

Out[l6]: [(u’quantum’, 0.5752027034759521),
(u’"laws’, 0.45106104016304016),
(u’scientific’, 0.43514519929885864),

u’engineering’, 0.4271385669708252),

u’gravity’, 0.42456042766571045),

u’ theory’, 0.41807645559310913),

u’mechanics’, 0.3903239369392395) ]

\4

v
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(
(
(
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Word2vec

Natural Language Processing Doc2vec

Analogies

» Relative meanings and word
relationships preserved in
vector representations
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Natural Language Processing Doc2vec

Analogies

» Relative meanings and word
relationships preserved in
vector representations

» MAN : KING :: WOMAN : ???
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Word2vec

. Doc2
Natural Language Processing ocevee

Analogies

» Relative meanings and word
relationships preserved in
vector representations " ™
» MAN : KING :: WOMAN : ???
> 7>king - Vman ~ X - 7womavn " —
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Word2vec

. Doc2
Natural Language Processing ocevee

MAN : KING :: WOMAN : ???

» In [17]: model.most_similar (positive =
["king’, ’'woman’],
["man’])

negative
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Word2vec

Natural Language Processing Doc2vec

MAN : KING :: WOMAN : ???

» In [17]: model.most_similar (positive =
["king’, ’'woman’],
["man’])

negative

u’queen’, 0.3589944541454315),
u’princess’ 0.33725661039352417),
u’arthur’, O 2945181727409363),
u’mistress’, 0.29320359230041504),
u’ france’ 0.2916792035102844),
u’lion’, 0.29003939032554626),
u’throne’, 0.2894885540008545),
u’kong’, 0.2762626111507416),
u’kingdom’, 0.26161640882492065),
u’prince’, 0.26111793518066406) ]
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Word2vec

Natural Language Processing Doc2vec

Document Vectors

» Combine word vectors into one document vector
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Word2vec

Natural Language Processing Doc2vec

Document Vectors

» Combine word vectors into one document vector

. f({V1, V... Vi}) = d
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Word2vec

. 2
Natural Language Processing DTS

Document Vectors

» Combine word vectors into one document vector
. f({V1, V... Vi}) = d

» Document vectors live in the same space as word vectors
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Word2vec

: Doc2
Natural Language Processing CESVET

Document Vectors

>

Combine word vectors into one document vector

(Vi Vo, Vi) = d

Document vectors live in the same space as word vectors
bad ~ not good — Vbad ~ Vnot good

v

\4

v
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Word2vec

: Doc2
Natural Language Processing CESVET

Document Vectors

>

Combine word vectors into one document vector

(Vi Vo, Vi) = d

Document vectors live in the same space as word vectors
bad ~ not good — Vbad ~ Vnot good

v

\4

v

v

Syntax trees
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Word2vec

Natural Language Processing Doc2vec

Syntax Trees

NP VP but P
All models are wrong, NP VP

some models are useful.
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