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AFINN List

word score
invincible 2
mirthful 3

flops -2
hypocritical -2

upset -2
overlooked -1
hooligans -2
welcome 2

John Koo Bag of Words Meets Bags of Popcorn



Introduction
Text Mining

Natural Language Processing

Sentiment Score
Bag of Words
tf-idf
NDSI

AFINN Score

Probability Densities by Sentiment Bayes Classifier, AUC = .770
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Bag of Words

I Count up the number of times
each term occurs in a review

I Using AFINN list to start

no good war great bad ...
Review 1 8 0 1 0 3 ...
Review 2 2 0 1 1 0 ...
Review 3 4 1 0 0 1 ...
Review 4 4 1 0 1 0 ...
Review 5 4 0 0 0 0 ...
Review 6 3 3 0 0 1 ...

...
...

...
...

...
...

. . .
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Bag of Words

Random Forest Classifier, AUC = .886
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Text Frequency–Inverse Document Frequency

I Compare a term’s relevance in a document to the inverse of its
relevance in a collection of documents

I The more frequently a term occurs in a document, the more
relevant it is to that document

I The more frequently a term occurs in a collection of documents,
the less relevant it is to each document in the collection
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Text Frequency–Inverse Document Frequency

tf (t ,d) = n(t |d)

idf (t ,D) = log
|D|

|{d ∈ D : t ∈ d}|

tfidf (t ,d ,D) = tf (t ,d)× idf (t ,D)
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Text Frequency–Inverse Document Frequency

AUC = .883
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Feature Extraction

I A priori feature extraction tends to perform poorly for simple
analyses

I It’s typically better to learn features from the data themselves
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Term Frequency

Word Frequency
movie 125,307

film 113,054
one 77,447
like 59,147
just 53,132

good 43,279
...

...
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Difference in Term Frequencies

Word Freq (Pos) Freq (Neg) Difference
movie 18,139 23,668 5,529

bad 1,830 7,089 5,259
great 6,294 2,601 3,693

just 7,098 10,535 3,437
even 4,899 7,604 2,705
worst 246 2,436 2,190

...
...

...
...
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Normalized Difference Sentiment Index

NDSI :=
n(t |1)− n(t |0)
n(t |1) + n(t |0)
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Normalized Difference Sentiment Index

NDSI :=
(n(t |1) + α)− (n(t |0) + α)

(n(t |1) + α) + (n(t |0) + α)
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Normalized Difference Sentiment Index

NDSI :=
n(t |1)− n(t |0)

n(t |1) + n(t |0) + 2α

John Koo Bag of Words Meets Bags of Popcorn



Introduction
Text Mining

Natural Language Processing

Sentiment Score
Bag of Words
tf-idf
NDSI

Normalized Difference Sentiment Index

NDSI :=
|n(t |1)− n(t |0)|

n(t |1) + n(t |0) + 2α
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Normalized Difference Sentiment Index

Word Freq (Pos) Freq (Neg) Difference NDSI
worst 246 2,436 2,190 .745
waste 94 1,351 1,257 .739
poorly 0 620 620 .708

lame 0 618 618 .691
awful 159 1,441 1,282 .691
mess 0 498 498 .660

...
...

...
...

...
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Normalized Difference Sentiment Index

Bag of Words, AUC = .919 tf-idf, AUC = .904
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Word2vec
Doc2vec

Word Vectors

I Vector representation of words
I word ∼ −→v i = [vi1, vi2, . . . , viN ] ∈ V ⊆ RN

I Relative word meanings reflected in vector representations
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Word Vectors

I Distributional hypothesis: Two words appear in similar contexts iff
they share similar meaning

I Context similarity: If two words appear in similar contexts, then
their vector representations are similar, i.e.
P(
−→v i |c) ≈ P(

−→v j |c) =⇒ −→v i ≈
−→v j

I Distributional hypothesis + context similarity =⇒ If two words
share similar meaning, then their vector representations are
similar
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One Word Contexts (Bigrams)

I Multinomial Logistic (Softmax) Regression

I P(
−→vj |
−→vi ) =

e
−→
βj ·
−→vi∑|V |

k e
−→
βk ·
−→vi

I Generalizable into multi-word contexts
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Word Similarity

I What do we mean by “similar”?

I Cosine Similarity

I sim(
−→v i ,
−→v j) =

−→v i ·
−→v j

‖−→v i‖‖
−→v j‖

I In [16]: model.most_similar(’physics’)
Out[16]: [(u’quantum’, 0.5752027034759521),

(u’laws’, 0.45106104016304016),
(u’scientific’, 0.43514519929885864),
(u’engineering’, 0.4271385669708252),
(u’gravity’, 0.42456042766571045),
(u’theory’, 0.41807645559310913),
(u’mechanics’, 0.3903239369392395)]
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Analogies

I Relative meanings and word
relationships preserved in
vector representations

I MAN : KING :: WOMAN : ???
I
−→v king −

−→v man ≈ −→x −−→v woman

John Koo Bag of Words Meets Bags of Popcorn



Introduction
Text Mining

Natural Language Processing

Word2vec
Doc2vec

Analogies

I Relative meanings and word
relationships preserved in
vector representations

I MAN : KING :: WOMAN : ???

I
−→v king −

−→v man ≈ −→x −−→v woman

John Koo Bag of Words Meets Bags of Popcorn



Introduction
Text Mining

Natural Language Processing

Word2vec
Doc2vec

Analogies

I Relative meanings and word
relationships preserved in
vector representations

I MAN : KING :: WOMAN : ???
I
−→v king −

−→v man ≈ −→x −−→v woman

John Koo Bag of Words Meets Bags of Popcorn



Introduction
Text Mining

Natural Language Processing

Word2vec
Doc2vec

MAN : KING :: WOMAN : ???

I In [17]: model.most_similar(positive =
[’king’, ’woman’],
negative = [’man’])

I Out[17]: [(u’queen’, 0.3589944541454315),
(u’princess’, 0.33725661039352417),
(u’arthur’, 0.2945181727409363),
(u’mistress’, 0.29320359230041504),
(u’france’, 0.2916792035102844),
(u’lion’, 0.29003939032554626),
(u’throne’, 0.2894885540008545),
(u’kong’, 0.2762626111507416),
(u’kingdom’, 0.26161640882492065),
(u’prince’, 0.26111793518066406)]
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Document Vectors

I Combine word vectors into one document vector

I f ({−→v 1,
−→v 2, . . .

−→v k}) =
−→
d

I Document vectors live in the same space as word vectors
I bad ≈ not good =⇒ −→v bad ≈

−→v not good

I Syntax trees
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Syntax Trees

S

IP

IP

VP

useful.are

NP

modelssome

but

IP

VP

wrong,are

NP

modelsAll
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