Math 5364 Notes
 Lagrange Multipliers

Jesse Crawford

Department of Mathematics
Tarleton State University

Gradient of a function

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function.
- The gradient of f is

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)^{\prime}
$$

Lagrange Multipliers Method

- Let f and G be continuously differentiable functions from \mathbb{R}^{n} to \mathbb{R}.
- Define the surface $S=\left\{x \in \mathbb{R}^{n} \mid G(x)=0\right\}$.
- Assume $\nabla G \neq 0$ on S.
- For $\lambda \in \mathbb{R}$, define the Lagrangian

$$
L(x, \lambda)=f(x)-\lambda G(x)
$$

- Consider the maximization (or minimization) problem

$$
\max \{f(x) \mid G(x)=0\}
$$

- If the maximum is attained at some point x_{0}, then at that point,

$$
\begin{gathered}
\frac{\partial}{\partial x_{i}} L=0, \text { for all } i=1, \ldots, n \\
\frac{\partial}{\partial \lambda} L=0
\end{gathered}
$$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- $f(x, y)=x^{2}+y^{2}+y$ and $G(x, y)=x^{2}+y^{2}-1$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- $f(x, y)=x^{2}+y^{2}+y$ and $G(x, y)=x^{2}+y^{2}-1$
- $L(x, y, \lambda)=x^{2}+y^{2}+y-\lambda\left(x^{2}+y^{2}-1\right)$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- $f(x, y)=x^{2}+y^{2}+y$ and $G(x, y)=x^{2}+y^{2}-1$
- $L(x, y, \lambda)=x^{2}+y^{2}+y-\lambda\left(x^{2}+y^{2}-1\right)$
- $\frac{\partial}{\partial x} L(x, y, \lambda)=2 x-2 x \lambda=0$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- $f(x, y)=x^{2}+y^{2}+y$ and $G(x, y)=x^{2}+y^{2}-1$
- $L(x, y, \lambda)=x^{2}+y^{2}+y-\lambda\left(x^{2}+y^{2}-1\right)$
- $\frac{\partial}{\partial x} L(x, y, \lambda)=2 x-2 x \lambda=0$
- $\frac{\partial}{\partial y} L(x, y, \lambda)=2 y+1-2 y \lambda=0$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- $f(x, y)=x^{2}+y^{2}+y$ and $G(x, y)=x^{2}+y^{2}-1$
- $L(x, y, \lambda)=x^{2}+y^{2}+y-\lambda\left(x^{2}+y^{2}-1\right)$
- $\frac{\partial}{\partial x} L(x, y, \lambda)=2 x-2 x \lambda=0$
- $\frac{\partial}{\partial y} L(x, y, \lambda)=2 y+1-2 y \lambda=0$
- $\frac{\partial}{\partial \lambda} L(x, y, \lambda)=x^{2}+y^{2}-1=0$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- $f(x, y)=x^{2}+y^{2}+y$ and $G(x, y)=x^{2}+y^{2}-1$
- $L(x, y, \lambda)=x^{2}+y^{2}+y-\lambda\left(x^{2}+y^{2}-1\right)$
- $\frac{\partial}{\partial x} L(x, y, \lambda)=2 x-2 x \lambda=0$
- $\frac{\partial}{\partial y} L(x, y, \lambda)=2 y+1-2 y \lambda=0$
- $\frac{\partial}{\partial \lambda} L(x, y, \lambda)=x^{2}+y^{2}-1=0$
- $\lambda=1$ or $x=0$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- $f(x, y)=x^{2}+y^{2}+y$ and $G(x, y)=x^{2}+y^{2}-1$
- $L(x, y, \lambda)=x^{2}+y^{2}+y-\lambda\left(x^{2}+y^{2}-1\right)$
- $\frac{\partial}{\partial x} L(x, y, \lambda)=2 x-2 x \lambda=0$
- $\frac{\partial}{\partial y} L(x, y, \lambda)=2 y+1-2 y \lambda=0$
- $\frac{\partial}{\partial \lambda} L(x, y, \lambda)=x^{2}+y^{2}-1=0$
- $\lambda=1$ or $x=0$
- If $\lambda=1$, then $2 y+1-2 y=0$, which is impossible, so $\lambda \neq 1$.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- $f(x, y)=x^{2}+y^{2}+y$ and $G(x, y)=x^{2}+y^{2}-1$
- $L(x, y, \lambda)=x^{2}+y^{2}+y-\lambda\left(x^{2}+y^{2}-1\right)$
- $\frac{\partial}{\partial x} L(x, y, \lambda)=2 x-2 x \lambda=0$
- $\frac{\partial}{\partial y} L(x, y, \lambda)=2 y+1-2 y \lambda=0$
- $\frac{\partial}{\partial \lambda} L(x, y, \lambda)=x^{2}+y^{2}-1=0$
- $\lambda=1$ or $x=0$
- If $\lambda=1$, then $2 y+1-2 y=0$, which is impossible, so $\lambda \neq 1$.
- So, $x=0$, and $y= \pm 1$.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- So, $x=0$, and $y= \pm 1$.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- So, $x=0$, and $y= \pm 1$.
- Points of interest: $(0,1)$ and $(0,-1)$.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- So, $x=0$, and $y= \pm 1$.
- Points of interest: $(0,1)$ and $(0,-1)$.
- $f(0,1)=2$ and $f(0,-1)=0$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- So, $x=0$, and $y= \pm 1$.
- Points of interest: $(0,1)$ and $(0,-1)$.
- $f(0,1)=2$ and $f(0,-1)=0$
- The maximum value of 2 is attained at $(0,1)$.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the circle $x^{2}+y^{2}=1$.

- So, $x=0$, and $y= \pm 1$.
- Points of interest: $(0,1)$ and $(0,-1)$.
- $f(0,1)=2$ and $f(0,-1)=0$
- The maximum value of 2 is attained at $(0,1)$.
- The minimum value of 0 is attained at $(0,-1)$.

Proposition

- Let $D \subseteq \mathbb{R}^{n}$.
- Let $f: D \rightarrow \mathbb{R}$.
- If x_{0} is an interior point of D, f is differentiable at x_{0}, and f has a global or local max/min at x_{0}, then

$$
\nabla f\left(x_{0}\right)=0
$$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the disk $x^{2}+y^{2} \leq 1$.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the disk $x^{2}+y^{2} \leq 1$.

- Points of interest on boundary: $(0,1)$ and $(0,-1)$.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the disk $x^{2}+y^{2} \leq 1$.

- Points of interest on boundary: $(0,1)$ and $(0,-1)$.
- Need to find critical points in the interior.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the disk $x^{2}+y^{2} \leq 1$.

- Points of interest on boundary: $(0,1)$ and $(0,-1)$.
- Need to find critical points in the interior.
- $\nabla f(x, y)=0$
- $2 x=0$
- $2 \mathrm{y}+1=0$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the disk $x^{2}+y^{2} \leq 1$.

- Points of interest on boundary: $(0,1)$ and $(0,-1)$.
- Need to find critical points in the interior.
- $\nabla f(x, y)=0$
- $2 x=0$
- $2 \mathrm{y}+1=0$
- Only critical point is $\left(0,-\frac{1}{2}\right)$

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the disk $x^{2}+y^{2} \leq 1$.

- Points of interest on boundary: $(0,1)$ and $(0,-1)$.
- Need to find critical points in the interior.
- $\nabla f(x, y)=0$
- $2 x=0$
- $2 \mathrm{y}+1=0$
- Only critical point is $\left(0,-\frac{1}{2}\right)$
- $f(0,1)=2, f(0,-1)=0$, and $f\left(0,-\frac{1}{2}\right)=-\frac{1}{4}$.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the disk $x^{2}+y^{2} \leq 1$.

- Points of interest on boundary: $(0,1)$ and $(0,-1)$.
- Need to find critical points in the interior.
- $\nabla f(x, y)=0$
- $2 x=0$
- $2 \mathrm{y}+1=0$
- Only critical point is $\left(0,-\frac{1}{2}\right)$
- $f(0,1)=2, f(0,-1)=0$, and $f\left(0,-\frac{1}{2}\right)=-\frac{1}{4}$.
- The absolute maximum value of 2 is attained at $(0,1)$.

Example

Find the extreme values of $f(x, y)=x^{2}+y^{2}+y$ on the disk $x^{2}+y^{2} \leq 1$.

- Points of interest on boundary: $(0,1)$ and $(0,-1)$.
- Need to find critical points in the interior.
- $\nabla f(x, y)=0$
- $2 x=0$
- $2 \mathrm{y}+1=0$
- Only critical point is $\left(0,-\frac{1}{2}\right)$
- $f(0,1)=2, f(0,-1)=0$, and $f\left(0,-\frac{1}{2}\right)=-\frac{1}{4}$.
- The absolute maximum value of 2 is attained at $(0,1)$.
- The absolute minimum value of $-\frac{1}{4}$ is attained at $\left(0,-\frac{1}{2}\right)$.

Partial Derivative Vector Notation

- Let $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$.
- Consider a function $f(x, y)$, that is, $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$.
- Define

$$
\begin{aligned}
\frac{\partial}{\partial x} f & =\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{m}}\right)^{\prime} \\
\frac{\partial}{\partial y} f & =\left(\frac{\partial f}{\partial y_{1}}, \ldots, \frac{\partial f}{\partial y_{n}}\right)^{\prime}
\end{aligned}
$$

Partial Derivative Vector Notation

- Let $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$.
- Consider a function $f(x, y)$, that is, $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$.
- Define

$$
\begin{aligned}
& \frac{\partial}{\partial x} f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{m}}\right)^{\prime} \\
& \frac{\partial}{\partial y} f=\left(\frac{\partial f}{\partial y_{1}}, \ldots, \frac{\partial f}{\partial y_{n}}\right)^{\prime}
\end{aligned}
$$

Examples

- Let $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{m}$, and $y \in \mathbb{R}^{n}$.

$$
\begin{aligned}
\frac{\partial}{\partial x} x^{\prime} A y & =A y \\
\frac{\partial}{\partial y} x^{\prime} A y & =A^{\prime} x
\end{aligned}
$$

- Let $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{m}$, and $y \in \mathbb{R}^{n}$.

$$
\begin{aligned}
\frac{\partial}{\partial x} x^{\prime} A y & =A y \\
\frac{\partial}{\partial y} x^{\prime} A y & =A^{\prime} x
\end{aligned}
$$

- If $\Sigma \in \mathbb{R}^{n \times n}$ is symmetric, then

$$
\frac{\partial}{\partial x} x^{\prime} \Sigma x=2 \Sigma x
$$

- Special cases: If $x, y \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
\frac{\partial}{\partial x} x^{\prime} y & =y \\
\frac{\partial}{\partial y} x^{\prime} y & =x \\
\frac{\partial}{\partial x} x^{\prime} x & =2 x
\end{aligned}
$$

Example

- Let $\Sigma \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
- Show that

$$
\max \left\{x^{\prime} \Sigma x \mid x^{\prime} x=1\right\}
$$

is attained at an eigenvector of Σ. Show that the maximum value is the corresponding eigenvalue.

Example

- Let $\Sigma \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
- Show that

$$
\max \left\{x^{\prime} \Sigma x \mid x^{\prime} x=1\right\}
$$

is attained at an eigenvector of Σ. Show that the maximum value is the corresponding eigenvalue.

- $f(x)=x^{\prime} \Sigma x$ and $G(x)=x^{\prime} x-1$

Example

- Let $\Sigma \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
- Show that

$$
\max \left\{x^{\prime} \Sigma x \mid x^{\prime} x=1\right\}
$$

is attained at an eigenvector of Σ. Show that the maximum value is the corresponding eigenvalue.

- $f(x)=x^{\prime} \Sigma x$ and $G(x)=x^{\prime} x-1$
- Lagrangian is $L(x, \lambda)=x^{\prime} \Sigma x-\lambda\left(x^{\prime} x-1\right)$

Example

- Let $\Sigma \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
- Show that

$$
\max \left\{x^{\prime} \Sigma x \mid x^{\prime} x=1\right\}
$$

is attained at an eigenvector of Σ. Show that the maximum value is the corresponding eigenvalue.

- $f(x)=x^{\prime} \Sigma x$ and $G(x)=x^{\prime} x-1$
- Lagrangian is $L(x, \lambda)=x^{\prime} \Sigma x-\lambda\left(x^{\prime} x-1\right)$

$$
\frac{\partial}{\partial x} L(x, \lambda)=2 \Sigma x-2 \lambda x=0
$$

Example

- Let $\Sigma \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
- Show that

$$
\max \left\{x^{\prime} \Sigma x \mid x^{\prime} x=1\right\}
$$

is attained at an eigenvector of Σ. Show that the maximum value is the corresponding eigenvalue.

- $f(x)=x^{\prime} \Sigma x$ and $G(x)=x^{\prime} x-1$
- Lagrangian is $L(x, \lambda)=x^{\prime} \Sigma x-\lambda\left(x^{\prime} x-1\right)$

$$
\frac{\partial}{\partial x} L(x, \lambda)=2 \Sigma x-2 \lambda x=0
$$

$$
\Sigma x=\lambda x
$$

Example

- Let $\Sigma \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
- Show that

$$
\max \left\{x^{\prime} \Sigma x \mid x^{\prime} x=1\right\}
$$

is attained at an eigenvector of Σ. Show that the maximum value is the corresponding eigenvalue.

- $f(x)=x^{\prime} \Sigma x$ and $G(x)=x^{\prime} x-1$
- Lagrangian is $L(x, \lambda)=x^{\prime} \Sigma x-\lambda\left(x^{\prime} x-1\right)$

0

$$
\frac{\partial}{\partial x} L(x, \lambda)=2 \Sigma x-2 \lambda x=0
$$

$$
\Sigma x=\lambda x
$$

- Also, $x^{\prime} x=1$, so $x \neq 0$, so x is an eigenvector of Σ.

Example

- Let $\Sigma \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
- Show that

$$
\max \left\{x^{\prime} \Sigma x \mid x^{\prime} x=1\right\}
$$

is attained at an eigenvector of Σ. Show that the maximum value is the corresponding eigenvalue.

- $f(x)=x^{\prime} \Sigma x$ and $G(x)=x^{\prime} x-1$
- Lagrangian is $L(x, \lambda)=x^{\prime} \Sigma x-\lambda\left(x^{\prime} x-1\right)$
-

$$
\frac{\partial}{\partial x} L(x, \lambda)=2 \Sigma x-2 \lambda x=0
$$

0

$$
\Sigma x=\lambda x
$$

- Also, $x^{\prime} x=1$, so $x \neq 0$, so x is an eigenvector of Σ.
- The maximum value is

Example

- Let $\Sigma \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
- Show that

$$
\max \left\{x^{\prime} \Sigma x \mid x^{\prime} x=1\right\}
$$

is attained at an eigenvector of Σ. Show that the maximum value is the corresponding eigenvalue.

$$
\Sigma x=\lambda x
$$

- Also, $x^{\prime} x=1$, so $x \neq 0$, so x is an eigenvector of Σ.
- The maximum value is

$$
x^{\prime} \Sigma x=x^{\prime} \lambda x=\lambda
$$

Proposition

- Let $D \subseteq \mathbb{R}^{n}$.
- Let $f: D \rightarrow \mathbb{R}$.
- If x_{0} is an interior point of D, f is differentiable at x_{0}, and f has a global or local max/min at x_{0}, then

$$
\nabla f\left(x_{0}\right)=\frac{\partial}{\partial x} f\left(x_{0}\right)=0
$$

- Let f and $G_{k}, k=1, \ldots, K$ be continuously differentiable functions from \mathbb{R}^{n} to \mathbb{R}.
- Define the surface $S=\left\{x \in \mathbb{R}^{n} \mid G_{1}(x)=\cdots=G_{K}(x)=0\right\}$.
- Assume $\nabla G_{k} \neq 0$ on S for all k.
- For $\lambda_{1}, \ldots, \lambda_{K} \in \mathbb{R}$, define the Lagrangian

$$
L(x, \lambda)=f(x)-\lambda_{1} G_{1}(x)-\cdots-\lambda_{K} G_{K}(x)
$$

- Consider the maximization (or minimization) problem

$$
\max \left\{f(x) \mid G_{1}(x)=\cdots=G_{K}(x)=0\right\} .
$$

- If the maximum is attained at some point x_{0}, then at that point,

$$
\begin{gathered}
\frac{\partial}{\partial x_{i}} L=0, \text { for all } i=1, \ldots, n \\
\frac{\partial}{\partial \lambda_{k}} L=0, \text { for all } k=1, \ldots, K
\end{gathered}
$$

