Math 5366 Notes Logistic Regression Jesse Crawford Department of Mathematics Tarleton State University $$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$, for $i = 1, \dots, n$. $$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$, for $i = 1, \dots, n$. Post-test_i = $$\beta_1 + \beta_2$$ Pre-test_i + β_3 MathSAT_i + β_4 VerbSAT_i + β_5 HSrank_i + β_6 Clickers_i + β_7 GroupWork_i + ϵ_i , for $i = 1, ..., 140$. $$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$, for $i = 1, \dots, n$. $$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$ $$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$, for $i = 1, \dots, n$. $$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$ $$Y = X\beta + \epsilon$$ ## Logistic Regression Models Output variable Y is dichotomous ($Y_i = 0$ or $Y_i = 1$) Example: Y =Student Retention ## Logistic Regression Models Output variable *Y* is dichotomous ($Y_i = 0$ or $Y_i = 1$) Example: Y =Student Retention $$g_i = X_i \beta = \beta_1 X_{i1} + \cdots + \beta_p X_{ip}$$, for $i = 1, \ldots, n$. ## Logistic Regression Models Output variable Y is dichotomous ($Y_i = 0$ or $Y_i = 1$) Example: Y =Student Retention $$g_i = X_i \beta = \beta_1 X_{i1} + \cdots + \beta_p X_{ip}$$, for $i = 1, \ldots, n$. $$P(Y_i = 1) = \pi_i = \frac{1}{1 + e^{-g_i}}$$, for $i = 1, ..., n$. ## Example in R #### True Model $$g_i = -3 + 0.06X_i$$, for $i = 1, ..., 100000$. X=runif(100000, 0, 100) $$g=-3+.06*X$$ $$Pi=(1/(1+exp(-g)))$$ $$U=runif(100000)$$ $$Y=(U$$ #### True Model $$g_i = -3 + 0.06X_i$$, for $i = 1, ..., 100000$. model=glm(Y~X, family=binomial) summary(model) ### **Maximum Likelihood Estimation** Likelihood function $$L = \prod_{i=1}^{n} \pi_{i}^{Y_{i}} (1 - \pi_{i})^{1 - Y_{i}}$$ Likelihood equations $$\sum_{i=1}^{n} X_{ij}(Y_{i} - \pi_{i}) = 0, \text{ for } j = 1, \dots, p.$$ Maximum Likelihood Estimator: $\hat{\beta}$ ## Estimating g and π $$\hat{\beta} = \text{Maximum Likelihood Estimator for } \beta$$ $$\hat{g}_i = X_i \hat{\beta} = \hat{\beta}_1 X_{i1} + \dots + \hat{\beta}_p X_{ip}$$, for $i = 1, \dots, n$. ## Estimating g and π $$\hat{\beta} = \text{Maximum Likelihood Estimator for } \beta$$ $$\hat{g}_i = X_i \hat{\beta} = \hat{\beta}_1 X_{i1} + \dots + \hat{\beta}_p X_{ip}$$, for $i = 1, \dots, n$. $$\hat{\pi}_i = \frac{1}{1 + e^{-\hat{g}_i}}, \text{ for } i = 1, \dots, n.$$ #### A Linear Regression Scatterplot Y vs. X (Not very useful). $\hat{\pi}$ vs. X \hat{g} vs. X (Best plot for assessing functional form) \hat{g} vs. X (Best plot for assessing functional form) ### Model Deviance and Aikake Information Criterion Deviance $$= -2 \ln(L) = -2 \sum_{i=1}^{n} Y_i \ln(\hat{\pi}_i) + (1 - Y_i) \ln(1 - \hat{\pi}_i)$$ $AIC = 2p - 2 \ln(L)$ ## Hypothesis Testing Consider the logistic regression model $$P(Y_i=1)= rac{1}{1+e^{-g_i}},$$ where $g_i=X_ieta.$ • Let $V_0 \leq V \leq \mathbb{R}^p$, and consider the testing problem $$H_0: \beta \in V_0 \text{ vs. } H: \beta \in V.$$ - The test statistic is $G = D_0 D$, where D_0 and D are the deviances under H_0 and H, respectively. - Under H₀, the approximate distribution of G is chi-square with dim(V) - dim(V₀) degrees of freedom, so reject $$H_0$$ if $G > \chi^2_{\alpha}(\dim(V) - \dim(V_0))$. ### Variable Selection - Manually - Stepwise - Best subsets ## Assessing Model Performance and Fit - Classification Accuracy - Area under ROC Curve - Hosmer-Lemeshow Goodness-of-fit Test This test is used to test the null hypothesis that a logistic regression model adequately fits the data. - This test is used to test the null hypothesis that a logistic regression model adequately fits the data. - Divide the data into 10 deciles based on the value of $\hat{\pi}$. - For k = 1, ..., 10, define the following - $ightharpoonup n_k = \text{number of objects (rows of data) in the } k \text{th decile}$ - $\hat{\pi}_k$ = average value of $\hat{\pi}$ for objects in the kth decile - o_k = number of objects in the kth decile with Y = 1 - This test is used to test the null hypothesis that a logistic regression model adequately fits the data. - Divide the data into 10 deciles based on the value of $\hat{\pi}$. - For k = 1, ..., 10, define the following - $ightharpoonup n_k = \text{number of objects (rows of data) in the } k \text{th decile}$ - $\hat{\pi}_k$ = average value of $\hat{\pi}$ for objects in the kth decile - o_k = number of objects in the kth decile with Y = 1 - The Hosmer-Lemeshow test statistic is $$\hat{C} = \sum_{k=1}^{10} \frac{(o_k - n_k \hat{\pi}_k)^2}{n_k \hat{\pi}_k (1 - \hat{\pi}_k)}$$ - This test is used to test the null hypothesis that a logistic regression model adequately fits the data. - Divide the data into 10 deciles based on the value of $\hat{\pi}$. - For k = 1, ..., 10, define the following - $ightharpoonup n_k = \text{number of objects (rows of data) in the } k \text{th decile}$ - $\hat{\pi}_k$ = average value of $\hat{\pi}$ for objects in the kth decile - o_k = number of objects in the kth decile with Y = 1 - The Hosmer-Lemeshow test statistic is $$\hat{C} = \sum_{k=1}^{10} \frac{(o_k - n_k \hat{\pi}_k)^2}{n_k \hat{\pi}_k (1 - \hat{\pi}_k)}$$ • Under H_0 , $\hat{C} \approx \chi^2(8)$. - This test is used to test the null hypothesis that a logistic regression model adequately fits the data. - Divide the data into 10 deciles based on the value of $\hat{\pi}$. - For k = 1, ..., 10, define the following - $n_k =$ number of objects (rows of data) in the kth decile - $\hat{\pi}_k$ = average value of $\hat{\pi}$ for objects in the kth decile - o_k = number of objects in the kth decile with Y = 1 - The Hosmer-Lemeshow test statistic is $$\hat{C} = \sum_{k=1}^{10} \frac{(o_k - n_k \hat{\pi}_k)^2}{n_k \hat{\pi}_k (1 - \hat{\pi}_k)}$$ - Under H_0 , $\hat{C} \approx \chi^2(8)$. - Reject H₀ if $\hat{C} > \chi_{\alpha}^2(8)$.