Math 5366 Notes

Logistic Regression

Jesse Crawford

Department of Mathematics Tarleton State University

$$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$
, for $i = 1, \dots, n$.

$$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$
, for $i = 1, \dots, n$.

Post-test_i =
$$\beta_1 + \beta_2$$
Pre-test_i + β_3 MathSAT_i + β_4 VerbSAT_i + β_5 HSrank_i + β_6 Clickers_i + β_7 GroupWork_i + ϵ_i , for $i = 1, ..., 140$.

$$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$
, for $i = 1, \dots, n$.

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

$$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$
, for $i = 1, \dots, n$.

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

$$Y = X\beta + \epsilon$$

Logistic Regression Models

Output variable Y is dichotomous ($Y_i = 0$ or $Y_i = 1$)

Example: Y =Student Retention

Logistic Regression Models

Output variable *Y* is dichotomous ($Y_i = 0$ or $Y_i = 1$)

Example: Y =Student Retention

$$g_i = X_i \beta = \beta_1 X_{i1} + \cdots + \beta_p X_{ip}$$
, for $i = 1, \ldots, n$.

Logistic Regression Models

Output variable Y is dichotomous ($Y_i = 0$ or $Y_i = 1$)

Example: Y =Student Retention

$$g_i = X_i \beta = \beta_1 X_{i1} + \cdots + \beta_p X_{ip}$$
, for $i = 1, \ldots, n$.

$$P(Y_i = 1) = \pi_i = \frac{1}{1 + e^{-g_i}}$$
, for $i = 1, ..., n$.

Example in R

True Model

$$g_i = -3 + 0.06X_i$$
, for $i = 1, ..., 100000$.
X=runif(100000, 0, 100)
$$g=-3+.06*X$$

$$Pi=(1/(1+exp(-g)))$$

$$U=runif(100000)$$

$$Y=(U$$

True Model

$$g_i = -3 + 0.06X_i$$
, for $i = 1, ..., 100000$.

model=glm(Y~X, family=binomial)
summary(model)

Maximum Likelihood Estimation

Likelihood function

$$L = \prod_{i=1}^{n} \pi_{i}^{Y_{i}} (1 - \pi_{i})^{1 - Y_{i}}$$

Likelihood equations

$$\sum_{i=1}^{n} X_{ij}(Y_{i} - \pi_{i}) = 0, \text{ for } j = 1, \dots, p.$$

Maximum Likelihood Estimator: $\hat{\beta}$

Estimating g and π

$$\hat{\beta} = \text{Maximum Likelihood Estimator for } \beta$$

$$\hat{g}_i = X_i \hat{\beta} = \hat{\beta}_1 X_{i1} + \dots + \hat{\beta}_p X_{ip}$$
, for $i = 1, \dots, n$.

Estimating g and π

$$\hat{\beta} = \text{Maximum Likelihood Estimator for } \beta$$

$$\hat{g}_i = X_i \hat{\beta} = \hat{\beta}_1 X_{i1} + \dots + \hat{\beta}_p X_{ip}$$
, for $i = 1, \dots, n$.

$$\hat{\pi}_i = \frac{1}{1 + e^{-\hat{g}_i}}, \text{ for } i = 1, \dots, n.$$

A Linear Regression Scatterplot

Y vs. X (Not very useful).

 $\hat{\pi}$ vs. X

 \hat{g} vs. X (Best plot for assessing functional form)

 \hat{g} vs. X (Best plot for assessing functional form)

Model Deviance and Aikake Information Criterion

Deviance
$$= -2 \ln(L) = -2 \sum_{i=1}^{n} Y_i \ln(\hat{\pi}_i) + (1 - Y_i) \ln(1 - \hat{\pi}_i)$$

 $AIC = 2p - 2 \ln(L)$

Hypothesis Testing

Consider the logistic regression model

$$P(Y_i=1)=rac{1}{1+e^{-g_i}},$$
 where $g_i=X_ieta.$

• Let $V_0 \leq V \leq \mathbb{R}^p$, and consider the testing problem

$$H_0: \beta \in V_0 \text{ vs. } H: \beta \in V.$$

- The test statistic is $G = D_0 D$, where D_0 and D are the deviances under H_0 and H, respectively.
- Under H₀, the approximate distribution of G is chi-square with dim(V) - dim(V₀) degrees of freedom, so

reject
$$H_0$$
 if $G > \chi^2_{\alpha}(\dim(V) - \dim(V_0))$.

Variable Selection

- Manually
- Stepwise
- Best subsets

Assessing Model Performance and Fit

- Classification Accuracy
- Area under ROC Curve
- Hosmer-Lemeshow Goodness-of-fit Test

 This test is used to test the null hypothesis that a logistic regression model adequately fits the data.

- This test is used to test the null hypothesis that a logistic regression model adequately fits the data.
- Divide the data into 10 deciles based on the value of $\hat{\pi}$.
- For k = 1, ..., 10, define the following
 - $ightharpoonup n_k = \text{number of objects (rows of data) in the } k \text{th decile}$
 - $\hat{\pi}_k$ = average value of $\hat{\pi}$ for objects in the kth decile
 - o_k = number of objects in the kth decile with Y = 1

- This test is used to test the null hypothesis that a logistic regression model adequately fits the data.
- Divide the data into 10 deciles based on the value of $\hat{\pi}$.
- For k = 1, ..., 10, define the following
 - $ightharpoonup n_k = \text{number of objects (rows of data) in the } k \text{th decile}$
 - $\hat{\pi}_k$ = average value of $\hat{\pi}$ for objects in the kth decile
 - o_k = number of objects in the kth decile with Y = 1
- The Hosmer-Lemeshow test statistic is

$$\hat{C} = \sum_{k=1}^{10} \frac{(o_k - n_k \hat{\pi}_k)^2}{n_k \hat{\pi}_k (1 - \hat{\pi}_k)}$$

- This test is used to test the null hypothesis that a logistic regression model adequately fits the data.
- Divide the data into 10 deciles based on the value of $\hat{\pi}$.
- For k = 1, ..., 10, define the following
 - $ightharpoonup n_k = \text{number of objects (rows of data) in the } k \text{th decile}$
 - $\hat{\pi}_k$ = average value of $\hat{\pi}$ for objects in the kth decile
 - o_k = number of objects in the kth decile with Y = 1
- The Hosmer-Lemeshow test statistic is

$$\hat{C} = \sum_{k=1}^{10} \frac{(o_k - n_k \hat{\pi}_k)^2}{n_k \hat{\pi}_k (1 - \hat{\pi}_k)}$$

• Under H_0 , $\hat{C} \approx \chi^2(8)$.

- This test is used to test the null hypothesis that a logistic regression model adequately fits the data.
- Divide the data into 10 deciles based on the value of $\hat{\pi}$.
- For k = 1, ..., 10, define the following
 - $n_k =$ number of objects (rows of data) in the kth decile
 - $\hat{\pi}_k$ = average value of $\hat{\pi}$ for objects in the kth decile
 - o_k = number of objects in the kth decile with Y = 1
- The Hosmer-Lemeshow test statistic is

$$\hat{C} = \sum_{k=1}^{10} \frac{(o_k - n_k \hat{\pi}_k)^2}{n_k \hat{\pi}_k (1 - \hat{\pi}_k)}$$

- Under H_0 , $\hat{C} \approx \chi^2(8)$.
- Reject H₀ if $\hat{C} > \chi_{\alpha}^2(8)$.

