Calculus I Lab 1

1. Calculate the following using Mathematica. Express each answer as an exact value (such as $\frac{1}{2}$ or $\sqrt{2}$) and as a decimal number (such as 0.5 or 1.41421).
(a)

$$
\frac{1+\frac{1}{2}-\frac{2}{3} \cdot \frac{5}{7}}{\frac{6}{13}(23)+7}
$$

(b) $\sin \left(\frac{\pi}{3}\right)$.
(c) $\ln (5)$.
(d) $\log _{10}(5)$.
(e) $\sqrt[3]{91}$.
(f) e^{8}.
2. Perform the following algebraic tasks in Mathematica.
(a) Define $x=17+61 \sqrt{37}$, and evaluate $5 x^{3}-14 x^{2}+6 x+9$.
(b) Simplify

$$
\frac{(a+h)^{3}-a^{3}}{h}
$$

(c) Expand $(x-2)^{10}$.
(d) Factor $x^{4}-6 x^{3}+10 x^{2}-6 x+9$.
(e) Solve $35-5 x=7 x^{2}-x^{3}$ for x, providing both exact solutions and decimal approximations.
3. In this problem, you will investigate the behavior of $f(x)=\frac{\sin (x)}{x}$ near $x=0$.
(a) Is $f(0)$ defined?
(b) Calculate $f(x)$ for the following values of $x: 0.1,0.01,0.001$, and 0.0001 . Also evaluate $f(x)$ at the negatives of these values. Based on this information, estimate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.
(c) Plot the graph of f using the window $-2 \leq x \leq 2,0 \leq y \leq 2$. Based on this plot, estimate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.
(d) Calculate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ directly using Mathematica's Limit command.
(e) How could you use the Manipulate command to investigate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$?
4. Explore Mathematica's capabilities further. For instance, you could pose your own problems and figure out how to solve them or think of creative uses of the Manipulate command.

