Calculus I Lab 1

1. Calculate the following using Mathematica. Express each answer as an exact value (such as $\frac{1}{2}$ or $\sqrt{2}$) and as a decimal number (such as 0.5 or 1.41421).

(a)

$$\frac{1+\frac{1}{2}-\frac{2}{3}\cdot\frac{5}{7}}{\frac{6}{13}(23)+7}.$$

- (b) $\sin(\frac{\pi}{3})$.
- (c) $\ln(5)$.
- (d) $\log_{10}(5)$.
- (e) $\sqrt[3]{91}$.
- (f) e^8 .

2. Perform the following algebraic tasks in Mathematica.

- (a) Define $x = 17 + 61\sqrt{37}$, and evaluate $5x^3 14x^2 + 6x + 9$.
- (b) Simplify

$$\frac{(a+h)^3 - a^3}{h}$$

- (c) Expand $(x-2)^{10}$.
- (d) Factor $x^4 6x^3 + 10x^2 6x + 9$.
- (e) Solve $35 5x = 7x^2 x^3$ for x, providing both exact solutions and decimal approximations.
- 3. In this problem, you will investigate the behavior of $f(x) = \frac{\sin(x)}{x}$ near x = 0.
 - (a) Is f(0) defined?
 - (b) Calculate f(x) for the following values of x: 0.1, 0.01, 0.001, and 0.0001. Also evaluate f(x) at the negatives of these values. Based on this information, estimate $\lim_{x\to 0} \frac{\sin(x)}{x}$.
 - (c) Plot the graph of f using the window $-2 \le x \le 2$, $0 \le y \le 2$. Based on this plot, estimate $\lim_{x\to 0} \frac{\sin(x)}{x}$.
 - (d) Calculate $\lim_{x\to 0} \frac{\sin(x)}{x}$ directly using Mathematica's *Limit* command.
 - (e) How could you use the *Manipulate* command to investigate $\lim_{x\to 0} \frac{\sin(x)}{x}$?
- 4. Explore Mathematica's capabilities further. For instance, you could pose your own problems and figure out how to solve them or think of creative uses of the *Manipulate* command.