Calculus I Lab 2

1. Suppose $f(x)=x^{10}$.
(a) Find $f^{\prime}(x)$
(b) Find $f^{\prime}(4)$
(c) Find $f^{\prime \prime}(x)$
(d) Find $f^{\prime \prime \prime}(x)$
(e) Find $f^{(8)}(x)$
(f) Find $f^{(8)}(-2)$
2. Suppose the position of a particle at time t is $s(t)=\sec \left(t^{3}\right)$.
(a) Find the velocity and acceleration of the particle at time t.
(b) Find the velocity and acceleration of the particle at time $t=3$.
3. Let $g(x)=\sqrt{x}$.
(a) Find the tangent line to the graph of g at $(4,2)$.
(b) In Mathematica, define $L(x)$ to be the equation of this tangent line.
(c) Graph g and its tangent line on the same graph, over the interval $0 \leq x \leq 12$.
(d) Repeat step (3c) using the interval $3 \leq x \leq 5$.
(e) Repeat step (3c) using the interval $3.9 \leq x \leq 4.1$.
(f) As you zoom in on these two graphs, what do you notice?
(g) Calculate $g(x)$ and $L(x)$, for $x=8,6,5,4.5,4.1$, and 4.01.
(h) In a book, you find the statement, "Whenever x is close to $4, \sqrt{x} \approx \frac{1}{4} x+1$ ". Do you agree or disagree? Why? How did the author figure this out?
4. Differentiate

$$
\cos \left(\frac{e^{x}}{\ln (x)+4 x^{5}}\right) \sqrt{\csc (x)+\cot (x)} .
$$

