Probability and Statistics Notes Chapter Two

Jesse Crawford

Department of Mathematics

Tarleton State University

Outline

(1) Section 2.1: Discrete Random Variables
(2) Section 2.2: Mathematical Expectation
(3) Section 2.3: The Mean, Variance, and Standard Deviation
4. Section 2.4: Bernoulli Trials and the Binomial Distribution
(5) Section 2.5: The Moment-Generating Function

6 Section 2.6: The Poisson Distribution

Random Variables

Definition

If A and B are sets, and f is a function from A to B, we write

$$
f: A \rightarrow B .
$$

Definition

A random variable X is a function from the sample space S to the real numbers.

$$
X: S \rightarrow \mathbb{R}
$$

Example

Two coins are flipped and the resulting sequence of heads/tails is noted. Let X be the number of heads in the sequence.

Example

Assuming the coins are fair and independent, calculate $P(X=1)$ and $P(X \geq 1)$.

- $(X=1)$ is shorthand for $\{s \in S \mid X(s)=1\}=\{H T, T H\}$
- $(X \geq 1)$ is shorthand for $\{s \in S \mid X(s) \geq 1\}=\{H T, T H, H H\}$

Definition

If $A \subseteq \mathbb{R}$, define the event

$$
(X \in A)=\{s \in S \mid X(s) \in A\} .
$$

Example

Roll two independent fair dice, and let X be the sum of the rolls.
Calculate $P(X=x)$, for $x=5,6,7,8,9$.

Definition

The support of a random variable X is the set of possible values of X,

$$
\operatorname{supp}(X)=\{X(s) \mid s \in S\}
$$

Definition

A random variable is called discrete if its support is countable (is finite or can be put in one-to-one correspondence with the positive integers).

Example

A fair coin is flipped until the result is heads, and X is the number of flips that occur.

- What is the support of X ?
- Is X a discrete random variable?

Definition

The probability mass function f of a discrete random variable X is

$$
\begin{gathered}
f: \mathbb{R} \rightarrow[0,1] \\
f(x)=P(X=x)
\end{gathered}
$$

- abbreviated p.m.f.
- also called the probability distribution function or probability density function (p.d.f.)

Proposition

A function $f: \mathbb{R} \rightarrow[0,1]$ is the p.m.f. of some random variable if and only if

- $f(x) \geq 0$, for $x \in \mathbb{R}$, and

$$
\sum_{x \in \mathbb{R}} f(x)=1 .
$$

Example

Let X be a random variable with p.m.f.

$$
f(x)= \begin{cases}c x^{2}, & x=1,2,3,4,5 \\ 0 & \text { otherwise }\end{cases}
$$

Find c.

Example

Let X be the number of aces in a five-card poker hand.

- Find the p.m.f. of X.
- Draw a probability histogram for X.
- The number of aces in each of ten poker hands is listed below:

$$
0,0,0,1,0,0,2,0,1,1
$$

Draw a relative frequency histogram for this data on the same set of axes as the probability histogram.

Definition (Hypergeometric Distribution)

Setting:

- Set of objects of two types
- $N=$ total number of objects
- $N_{1}=$ number of objects of the 1st type
- $N_{2}=$ number of objects of the 2nd type
- Select n objects randomly without replacement
- $X=$ number of objects in sample of 1st type
- The p.m.f. of X is

$$
P(X=x)=\frac{\binom{N_{1}}{x}\binom{N_{2}}{n-x}}{\binom{N}{n}} .
$$

- X is said to have a hypergeometric distribution.

Outline

(1) Section 2.1: Discrete Random Variables
(2) Section 2.2: Mathematical Expectation
(3) Section 2.3: The Mean, Variance, and Standard Deviation
4. Section 2.4: Bernoulli Trials and the Binomial Distribution
(5) Section 2.5: The Moment-Generating Function
6) Section 2.6: The Poisson Distribution

Example

When you buy a scratch-off lottery ticket, you have an 80% chance of winning nothing, a 15% chance of winning $\$ 2$, and a 5% chance of winning $\$ 10$. If the ticket costs $\$ 1$, should you buy one?

Definition

Suppose X is a discrete random variable with p.m.f. f. Then the expected value of X is

$$
E(X)=\sum_{x \in \mathbb{R}} x f(x),
$$

assuming the series converges absolutely. Otherwise, the expected value does not exist.

Example

Let X be the number of heads occurring when a fair coin is flipped 3 times.

- What is the expected value of X ?
- Find $E\left(X^{2}+7 X\right)$
- Find $E(5 X+4)$

Suppose $u: \mathbb{R} \rightarrow \mathbb{R}$.

$$
E(u(X))=\sum_{x \in \mathbb{R}} u(x) f(x)
$$

For random variables X and Y and a constant c,

- $E(X+Y)=E(X)+E(Y)$
- $E(c X)=c E(X)$
- $E(c)=c$

An Insurance Policy

Example

An automobile insurance policy has a deductible of $\$ 500$. Let X be the cost of damages to a vehicle in an accident, and assume X has the following p.m.f.

x	0	250	500	1000	2000
$f(x)$	0.1	0.2	0.4	0.2	0.1

If an accident occurs, what is the expected value of the payment made by the insurance company?

Expected Value for the Hypergeometric Distribution

Example

In a club with a 100 members, 60 members approve of the president. In a random sample of size 5 , let X be the number of people who approve of the mayor. Find the expected value of X.

Let X have a hypergeometric distribution where

- $N_{1}=$ number of objects of type 1
- $N=$ total number of objects
- $n=$ sample size

$$
E(X)=\frac{N_{1}}{N} n
$$

Let X have a hypergeometric distribution where

- $N_{1}=$ number of objects of type 1
- $N=$ total number of objects
- $n=$ sample size

$$
E(X)=\frac{N_{1}}{N} n
$$

Example

If you have 10 red pens and 4 blue pens, and you select 6 pens at random, what is the expected value of the number of blue pens in your sample?

Outline

(1) Section 2.1: Discrete Random Variables
(2) Section 2.2: Mathematical Expectation
(3) Section 2.3: The Mean, Variance, and Standard Deviation
(4) Section 2.4: Bernoulli Trials and the Binomial Distribution
(5) Section 2.5: The Moment-Generating Function
(6) Section 2.6: The Poisson Distribution

- $E(X)=$ expected value of X
- $E(X)=$ "average value" of X
- $E(X)$ also called the mean of X
- Alternative notation:

$$
\mu=E(X) \text { or } \mu_{X}=E(X)
$$

Definition

The variance of X is

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-\mu^{2}
$$

The standard deviation of X is

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

Definition

The r th moment of X about b is

$$
E\left[(X-b)^{r}\right] .
$$

The r th moment of X about the origin, $E\left(X^{r}\right)$, is usually just called the r th moment of X.

Definition

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample.

- The sample mean is

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} .
$$

- The sample variance is

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- The sample variance can be computed more easily as follows:

$$
s^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n-1} .
$$

- The sample standard deviation is $s=\sqrt{s^{2}}$.

The variance of a hypergeometric random variable is

$$
\operatorname{Var}(X)=n p(1-p) \frac{N-n}{N-1}
$$

where $p=\frac{N_{1}}{N}$.

Outline

(1) Section 2.1: Discrete Random Variables
(2) Section 2.2: Mathematical Expectation
(3) Section 2.3: The Mean, Variance, and Standard Deviation
4. Section 2.4: Bernoulli Trials and the Binomial Distribution
(5) Section 2.5: The Moment-Generating Function

6 Section 2.6: The Poisson Distribution

Definition

- A Bernoulli trial is a random experiment that only has 2 possible outcomes.
- Sample space: $S=\{$ success, failure $\}$
- Suppose

$$
X(\text { success })=1 \text { and } X(\text { failure })=0
$$

- p.m.f. for X :

$$
f(x)= \begin{cases}p, & x=1 \\ 1-p, & x=0\end{cases}
$$

- X has a Bernoulli distribution with parameter p.
- $E(X)=p$
- $\operatorname{Var}(X)=p(1-p)$
- $\sigma_{X}=\sqrt{p(1-p)}$
- Alternative notation: $q=1-p$

Definition

- Consider a sequence of Bernoulli trials such that
$n=$ the number of trials
$p=$ the probability of success on each trial the trials are independent
$X=$ number of success that occur
- X has a binomial distribution with parameters n and p.
- $X \sim b(n, p)$
- p.m.f. for X :

$$
f(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1, \ldots, n
$$

- $E(X)=n p$
- $\operatorname{Var}(X)=n p(1-p)$

Definition

The cumulative distribution function of X is

$$
F(x)=P(X \leq x)
$$

Often, it is simply called the distribution function of X.

Example

There is a 15% chance that items produced in a certain factory are defective. Assuming that 9 items are produced, and assuming that they are statistically independent, what is the probability that

- at most 4 are defective?
- at least 6 are defective?
- more than 6 are defective?
- the number of defective items is between 2 and 5 inclusive?

Connection Between the Hypergeometric and Binomial Distributions

Random Sampling

- Without replacement: hypergeometric
- With replacement: binomial

Example

In a university organization with 200 members, 60 are seniors. In a random sample of size 10 , what is the probability that 4 are seniors, if the sampling is done

- without replacement?
- with replacement?
- Find the expected value, variance, and standard deviation of the number of seniors in the sample under both types of sampling.

Outline

(1) Section 2.1: Discrete Random Variables
(2) Section 2.2: Mathematical Expectation
(3) Section 2.3: The Mean, Variance, and Standard Deviation
4. Section 2.4: Bernoulli Trials and the Binomial Distribution
(5) Section 2.5: The Moment-Generating Function
(6) Section 2.6: The Poisson Distribution

Definition

The moment-generating function of X is

$$
M(t)=E\left(e^{t X}\right),
$$

assuming $E\left(e^{t X}\right)$ is finite on some open interval $-h<t<h$.

Example

Let X be a random variable with p.m.f.

$$
f(x)=\frac{1}{14} x^{2}, \text { for } x=1,2,3 .
$$

Find the moment generating function of X.

Example

- If the p.m.f. of X is $f(x)=\frac{6}{\pi^{2} x^{2}}$, for $x=1,2, \ldots$
- then X does not have a moment generating function.

Example

- Suppose the m.g.f. of X is $M(t)=\frac{3}{6} e^{t}+\frac{2}{6} e^{2 t}+\frac{1}{6} e^{3 t}$.
- Find the p.m.f. of X.

Example

Find the p.m.f. of X if the m.g.f. is

$$
M(t)=\frac{e^{t} / 2}{1-e^{t} / 2}, t<\ln (2) .
$$

Theorem

X and Y have the same m.g.f. if and only if they have the same p.m.f.

- $E(X)=M^{\prime}(0)$
- $E\left(X^{2}\right)=M^{\prime \prime}(0)$
- $E\left(X^{r}\right)=M^{(r)}(0)$
- $\operatorname{Var}(X)=M^{\prime \prime}(0)-M^{\prime}(0)^{2}$

Review for Exam Two

- Discrete Random Variables
- Definitions of random variables, discrete random variables, p.m.f., and support.
- Probabilities involving random variables
- Properties of a p.m.f.
- Hypergeometric distribution
- Mathematical Expectation
- Definition
- Calculating $E(X)$
- Properties of E
- Expected value hypergeometric random variable: $E(X)=n p$
- The Mean, Variance, and Standard Deviation
- Definitions/notation for mean, variance, and standard deviation
- for random variables and samples
- Shortcut formulas for variance of a random variable/sample
- Be able to compute everything "by hand".
- Variance of a hypergeometric random variable: $\operatorname{Var}(X)=n p(1-p) \frac{N-n}{N-1}$.
- Property of variance: $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$, if a and b are constants.
- Bernoulli Trials and the Binomial Distribution
- Probabilities
- p.m.f.
- c.d.f. table/computer/calculator
- $E(X)=n p, \operatorname{Var}(X)=n p(1-p)$
- Moment-Generating Functions
- p.m.f. \rightarrow m.g.f.
- m.g.f. \rightarrow p.m.f.
- $E\left(X^{r}\right)=M^{(r)}(0)$
- $\operatorname{Var}(X)=M^{\prime \prime}(0)-M^{\prime}(0)^{2}$

Outline

(1) Section 2.1: Discrete Random Variables
(2) Section 2.2: Mathematical Expectation
(3) Section 2.3: The Mean, Variance, and Standard Deviation

4 Section 2.4: Bernoulli Trials and the Binomial Distribution
(5) Section 2.5: The Moment-Generating Function
6) Section 2.6: The Poisson Distribution

Approximate Poisson Process with Parameter $\lambda>0$

Setting

- Measuring occurrences of some event on a continuous interval.
- Examples:

Number of phone calls received in 1 hour
Number of defects in 1 meter of wire

Assumptions

- Occurrences in non-overlapping intervals are independent.
- In a sufficiently short interval of length h, the probability of 1 occurrence is approximately λh.
- In a sufficiently short interval, the probability of 2 or more occurrences is essentially zero.

Poisson Distribution

- Let $X=$ \# of occurrences in an interval of length 1
- Then X has a Poisson distribution with parameter λ.

$$
f(x)=P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
$$

Example

Phone calls received by a company are a Poisson process with parameter $\lambda=4$. In a 1 minute period, find the probability of receiving

- 2 calls?
- 5 calls?
- at most 3 calls?
- at least 7 calls?
- If X has a Poisson distribution with parameter λ, then
- $E(X)=\operatorname{Var}(X)=\lambda$
- For a Poisson process with parameter λ,
- λ is the average \# of occurrences in an interval of length 1.

Example

Phone calls received by a company are a Poisson process, and the company receives an average of 4 calls per minute. In a 3 minute period, find the probability of the company receiving

- 10 calls?
- at most 15 calls?

Interval of Length t

- Consider a Poisson process with parameter λ
- If $X=\#$ of occurrences in an interval of length t,
- then X has a Poisson distribution with mean λt.

Example

On average, there are 3 flaws in 8 meters of copper wire. For a piece of wire 20 meters long, find the probability of observing

- 5 flaws.
- fewer than 9 flaws.
- Find the expected value, variance, and standard deviation of the number of flaws on a 20 meter piece of wire.

Data

Example

Let X equal the number of green m\&m's in a package of size 22. Forty-five observations of X yielded the following frequencies for the possible outcomes of X :

Outcome (x):	0	1	2	3	4	5	6	7	8	9
Frequency:	0	2	4	5	7	9	8	5	3	2

- Calculate \bar{x} and s^{2}. Are they close?
- Compare the relative frequency histogram to the probability histogram of a Poisson random variable with mean $\lambda=5$.
- Do these data appear to be observations from a Poisson random variable?

Poisson Approximation to the Binomial

- If n is large and p is small,
- $\operatorname{bin}(n, p) \approx$ Poisson with $\lambda=n p$.
- $n \geq 100$ and $p \leq 0.1$
- $n \geq 20$ and $p \leq 0.05$

Example

In a shipment of 2000 items, 4% are defective. In a random sample of size 100, find the approximate probability that more than 10 items are defective.

