Probability and Statistics Notes Chapter Three

Jesse Crawford

Department of Mathematics Tarleton State University

2 Section 3.2: Continuous Random Variables

Discrete Data

Possible Values

- Countable.
- Typically either
 - {0, 1, ..., n} or
 {0, 1, 2, ...}

Example

- Number of free throws made in a sequence of 10 attempts.
- Possible values: 0, 1, ..., 10
- Typical sample: 9, 10, 7, 10, 9, 6, 7, 8

Example

- Number of phone calls received in a five minute period.
- Possible values: 0, 1, 2, ...
- Typical sample: 28, 28, 16, 29, 28, 20, 24, 15

Possible Values

- Not countable
- Usually some interval of real numbers

Example

- Weights of randomly selected men.
- Set of possible values: $(0,\infty)$
- or perhaps (100, 190)
- Typical sample: 161.34, 151.06, 137.38, 136.99, 131.95, 134.49, 140.86, 110.86

Example

- Measurement errors
- Set of possible values: $(-\infty,\infty)$
- or perhaps (-1, 1)
- Typical sample: -0.407, -0.398, 0.059, 0.555

Definition

X is a *continuous random variable* if there is a function $f : \mathbb{R} \to \mathbb{R}$ such that

- $f(x) \ge 0$, for all $x \in \mathbb{R}$,
- $\int_{-\infty}^{\infty} f(x) dx = 1$, and

•
$$P(a \leq X \leq b) = \int_a^b f(x) dx.$$

f is the probability density function (p.d.f.) of X.

Calculating with Continuous Random Variables

•
$$E(X) = \int_{-\infty}^{\infty} xf(x)dx$$

• $E(u(X)) = \int_{-\infty}^{\infty} u(x)f(x)dx$
• $E(X^2) = \int_{-\infty}^{\infty} x^2f(x)dx$
• $Var(X) = E(X^2) - E(X)^2$
• $\sigma_X = \sqrt{Var(X)}$
• $M(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx}f(x)dx$

Cumulative Distribution Function (c.d.f.)

• Cumulative distribution function: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$.

•
$$P(a \leq X \leq b) = F(b) - F(a) = \int_a^b f(x) dx.$$

- F'(x) = f(x), if *f* is continuous at *x*.
- Properties of *F*:
 - F is nondecreasing
 - $\operatorname{Iim}_{x\to\infty}F(x)=1$
 - $\blacktriangleright \lim_{x\to -\infty} F(x) = 0$
 - ▶ If *X* is a continuous random variable, *F* is continuous.
- Note that *f* need not be continuous, and in fact *f* can be modified at finitely many points, and it will still be a p.d.f. for *X*.

Review for Exam 3

- Section 3.1: Continuous Data
 - Relative frequency histogram for continuous data
 - Sample percentiles/quantiles/quartiles
- Section 3.2: Continuous Random Variables
 - p.d.f.
 - ▶ $\sum \rightarrow \int$
 - ▶ c.d.f.
 - Theoretical percentiles/quantiles/quartiles
- Section 3.3: Uniform and Exponential Distributions
 - Uniform distribution

$$f(x) = rac{1}{b-a}, ext{ for } a \leq x \leq b$$

 $F(x) = rac{x-a}{b-a}, ext{ for } a \leq x \leq b$

▶ $\mu = \frac{a+b}{2}$

- Section 3.3: Uniform and Exponential Distributions
 - Exponential Distribution

$$f(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$$
, for $x > 0$

$$F(x) = 1 - e^{-\frac{x}{\theta}}$$
, for $x > 0$

- $\mu = \theta$ and $\sigma^2 = \theta^2$
- Waiting time until 1st phone call in a Poisson process.
- Section 3.4: The Gamma and Chi-square Distributions
 - Gamma distribution with parameters $\alpha, \theta > 0$

$$f(x) = rac{1}{\Gamma(\alpha) heta^{lpha}} x^{lpha - 1} e^{-rac{x}{ heta}}$$
, for $x > 0$

- $\mu = \alpha \theta$ and $\sigma^2 = \alpha \theta^2$
- Waiting time until ath phone call in a Poisson process.
- $\chi^2(r) = \text{Gamma}(\alpha = \frac{r}{2}, \theta = 2)$
- Be able to find $\chi^2_{0.05}(r)$ etc.

Section 3.5: Distributions of Functions of a Random Variable

- Given X, find p.d.f. of Y = u(X)
- Distribution function technique

$$G(y) = P(Y \le y) = P[u(X) \le y]$$

 $g(y) = G'(y)$

 Change of variables technique. Only works if u is increasing or decreasing.

$$v = u^{-1}$$
$$g(y) = f[v(y)]|v'(y)|$$