Probability and Statistics Notes Chapter Three

Jesse Crawford

Department of Mathematics

Tarleton State University

Outline

(2) Section 3.2: Continuous Random Variables

Discrete Data

Possible Values

- Countable.
- Typically either

$$
\begin{aligned}
& \{0,1, \ldots, n\} \text { or } \\
& \{0,1,2, \ldots\}
\end{aligned}
$$

Example

- Number of free throws made in a sequence of 10 attempts.
- Possible values: $0,1, \ldots, 10$
- Typical sample: 9, 10, 7, 10, 9, 6, 7, 8

Example

- Number of phone calls received in a five minute period.
- Possible values: $0,1,2, \ldots$
- Typical sample: $28,28,16,29,28,20,24,15$

Continuous Data

Possible Values

- Not countable
- Usually some interval of real numbers

Example

- Weights of randomly selected men.
- Set of possible values: $(0, \infty)$
- or perhaps $(100,190)$
- Typical sample: $161.34,151.06,137.38,136.99,131.95,134.49,140.86,110.86$

Example

- Measurement errors
- Set of possible values: $(-\infty, \infty)$
- or perhaps $(-1,1)$
- Typical sample: -0.407, -0.398, 0.059, 0.555

Outline

(9) Section 3.1: Continuous Data

(2) Section 3.2: Continuous Random Variables

Definition

X is a continuous random variable if there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

- $f(x) \geq 0$, for all $x \in \mathbb{R}$,
- $\int_{-\infty}^{\infty} f(x) d x=1$, and
- $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$.
f is the probability density function (p.d.f.) of X.

Calculating with Continuous Random Variables

- $E(X)=\int_{-\infty}^{\infty} x f(x) d x$
- $E(u(X))=\int_{-\infty}^{\infty} u(x) f(x) d x$
- $E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x$
- $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$
- $\sigma_{X}=\sqrt{\operatorname{Var}(X)}$
- $M(t)=E\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$

Cumulative Distribution Function (c.d.f.)

- Cumulative distribution function: $F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t$.
- $P(a \leq X \leq b)=F(b)-F(a)=\int_{a}^{b} f(x) d x$.
- $F^{\prime}(x)=f(x)$, if f is continuous at x.
- Properties of F :
- F is nondecreasing
- $\lim _{x \rightarrow \infty} F(x)=1$
- $\lim _{x \rightarrow-\infty} F(x)=0$
- If X is a continuous random variable, F is continuous.
- Note that f need not be continuous, and in fact f can be modified at finitely many points, and it will still be a p.d.f. for X.

Review for Exam 3

- Section 3.1: Continuous Data
- Relative frequency histogram for continuous data
- Sample percentiles/quantiles/quartiles
- Section 3.2: Continuous Random Variables
- p.d.f.
- $\sum \rightarrow \int$
- c.d.f.
- Theoretical percentiles/quantiles/quartiles
- Section 3.3: Uniform and Exponential Distributions
- Uniform distribution

$$
\begin{aligned}
& f(x)=\frac{1}{b-a}, \text { for } a \leq x \leq b \\
& F(x)=\frac{x-a}{b-a}, \text { for } a \leq x \leq b
\end{aligned}
$$

- $\mu=\frac{a+b}{2}$
- Section 3.3: Uniform and Exponential Distributions
- Exponential Distribution

$$
\begin{gathered}
f(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}}, \text { for } x>0 \\
F(x)=1-e^{-\frac{x}{\theta}}, \text { for } x>0
\end{gathered}
$$

- $\mu=\theta$ and $\sigma^{2}=\theta^{2}$
- Waiting time until 1st phone call in a Poisson process.
- Section 3.4: The Gamma and Chi-square Distributions
- Gamma distribution with parameters $\alpha, \theta>0$

$$
f(x)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-\frac{\chi}{\theta}}, \text { for } x>0
$$

- $\mu=\alpha \theta$ and $\sigma^{2}=\alpha \theta^{2}$
- Waiting time until α th phone call in a Poisson process.
- $\chi^{2}(r)=\operatorname{Gamma}\left(\alpha=\frac{r}{2}, \theta=2\right)$
- Be able to find $\chi_{0.05}^{2}(r)$ etc.
- Section 3.5: Distributions of Functions of a Random Variable
- Given X, find p.d.f. of $Y=u(X)$
- Distribution function technique

$$
\begin{gathered}
G(y)=P(Y \leq y)=P[u(X) \leq y] \\
g(y)=G^{\prime}(y)
\end{gathered}
$$

- Change of variables technique. Only works if u is increasing or decreasing.

$$
\begin{gathered}
v=u^{-1} \\
g(y)=f[v(y)]\left|v^{\prime}(y)\right|
\end{gathered}
$$

