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Change of Variables in the Bivariate Case

Theorem
Suppose X1 and X2 are random variables with joint p.d.f. f (x1, x2).
Let Y1 = u1(X1,X2) and Y2 = u2(X1,X2).
Also, assume the transformation is 1-1 and satisfies certain
regularity conditions analogous to those in section 5.1.
Let X1 = v1(Y1,Y2) and X2 = v2(Y1,Y2) be the inverse mappings.
Then the joint p.d.f. for Y1 and Y2 is

g(y1, y2) = f (v1(y1, y2), v2(y1, y2))|J|,

where

J =

∣∣∣∣∣ ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣ .
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The F Distribution

Definition
Suppose U and V are independent, and
U ∼ χ2(r1) and V ∼ χ2(r2).
Then the random variable

W =
U/r1

V/r2

is said to have an F distribution with r1 and r2 degrees of freedom,
denoted F (r1, r2).
If 0 < α < 1, then Fα(r1, r2) is the critical value such that

P[W ≥ Fα(r1, r2)] = α.
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Proposition
If W ∼ F (r1, r2), then the p.d.f. for W is

f (w) =
(r1/r2)r1/2Γ[(r1 + r2)/2]w r1/2−1

Γ(r1/2)Γ(r2/2)[1 + (r1w/r2)](r1+r2)/2 .
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Independence and Random Samples

Definition
Suppose X1, . . . ,Xn are random variables with joint p.d.f.
f (x1, . . . , xn), and
let fi(xi) be the p.d.f. of Xi , for i = 1, . . . ,n.
Then X1, . . . ,Xn are independent if

f (x1, . . . , xn) = f1(x1) · · · fn(xn).

If these random variables all have the same distribution, they are
said to be identically distributed.
If X1, . . . ,Xn are independent and identically distributed (IID), then
they are referred to as a random sample of size n from their
common distribution.
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Example
A certain population of women have heights that are normally
distributed,
with mean 64 inches and standard deviation 2 inches.
Let (X1,X2,X3) be a random sample of size 3 from this population.
Find the joint p.d.f. for (X1,X2,X3).
Find the probability that everyone’s height in the sample exceeds
67 inches.
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Proposition
If X1, . . . ,Xn are independent, then for any sets A1, . . . ,An,

P(X1 ∈ A1, . . . ,Xn ∈ An) = P(X1 ∈ A1) · · ·P(Xn ∈ An)

Also, for any functions u1, . . . ,un,

E [u1(X1) · · · un(Xn)] = E [u1(X1)] · · ·E [un(Xn)]
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Mean and Variance of a Linear Combination of R.V.’s

Theorem
Suppose X1, . . . ,Xn are independent R.V.’s
with means µ1, . . . , µn, and
variances σ2

1, . . . , σ
2
n.

If a1, . . . ,an ∈ R, then

E [a1X1 + · · ·+ anXn] = a1µ1 + · · ·+ anµn, and

Var[a1X1 + · · ·+ anXn] = a2
1σ

2
1 + · · ·+ a2

nσ
2
n.
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Mean and Variance of the Sample Mean

Definition
Let X1, . . . ,Xn be a random sample.
The sample mean is

X =
1
n

n∑
i=1

Xi .

Proposition
Let X1, . . . ,Xn be a random sample from a population with
population mean µ and population variance σ2.
Then

E(X ) = µ, and

Var(X ) =
σ2

n
.
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m.g.f. of a Linear Combination

Theorem (5.4-1)
Suppose X1, . . . ,Xn are independent R.V.’s with
moment-generating functions MXi (t), for i = 1, . . . ,n.
Then the moment-generating function of Y =

∑n
i=1 aiXi is

MY (t) =
n∏

i=1

MXi (ai t).

Example (5.4-2)
Suppose 0 ≤ p ≤ 1, and
X1, . . . ,Xn all have a Bernoulli(p) distribution.
Find the distribution of Y =

∑n
i=1 Xi .
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Corollaries for Random Samples

Corollary (5.4-1)
Suppose X1, . . . ,Xn is a random sample
from a distribution with m.g.f. M(t).
Then the m.g.f. of Y =

∑n
i=1 Xi is

MY (t) = [M(t)]n, and

the m.g.f. of X is

MX (t) =

[
M
(

t
n

)]n

.

Example (5.4-3)
Suppose (X1,X2,X3) is a random sample from
an exponential distribution with mean θ.
Find the distributions of Y = X1 + X2 + X3 and X .
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Theorem (5.4-2)
If X1, . . . ,Xn are independent, and
Xi ∼ χ2(ri), for each i, then

X1 + · · ·+ Xn ∼ χ2(r1 + · · ·+ rn).

Corollary (5.4-2)
If Z1, . . . ,Zn are independent standard normal R.V.’s, then

W = Z 2
1 + · · ·+ Z 2

n ∼ χ2(n).

Corollary (5.4-3)

If X1, . . . ,Xn are independent, and each Xi ∼ N(µi , σ
2
i ), then

W =
n∑

i=1

(Xi − µi)
2

σ2
i

∼ χ2(n).
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Linear Combinations of Independent Normal R.V.’s

Theorem (5.5-1)
Suppose X1, . . . ,Xn are independent, and
Xi ∼ N(µi , σ

2
i ), for i = 1, . . . ,n.

Then

Y =
n∑

i=1

ciXi ∼ N

(
n∑

i=1

ciµi ,

n∑
i=1

c2
i σ

2
i

)
.

Example (5.5-1)
Suppose X1 and X2 are independent normal random variables,
X1 ∼ N(693.2,22820), and X2 ∼ N(631.7,19205).
Find P(X1 > X2).
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Sample Mean and Variance for a Normal Population

Theorem (5.5-2)

Let (X1, . . . ,Xn) be a random sample from N(µ, σ2).
Then the sample mean

X =
1
n

n∑
i=1

Xi ,

and the sample variance,

S2 =
1

n − 1

n∑
i=1

(Xi − X )2,

are independent. Their distributions are

X ∼ N(µ, σ2/n), and S2 ∼ σ2

n − 1
χ2(n − 1).
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Example
Consider a population of women whose heights are
normally distributed with mean 64 inches
and standard deviation 2 inches.
For a sample of size n = 10, find P(63 < X < 65), and
find constants a and b such that P(a < S2 < b) = 0.95.
Repeat the problem when n = 81.
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Unbiasedness of X and S2

From Theorem 5.5-2, we have

E [X ] = µ, and E [S2] = σ2.

X , the sample mean, is used to estimate the population mean µ.
S2, the sample variance, is used to estimate the population
variance σ2.
On average, each of these estimators are equal to the parameters
they are intended to estimate.
That is, X and S2 are unbiased.
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Remarks about Degrees of Freedom

In the proof of Theorem 5.5-2, we noted that

n∑
i=1

(Xi − µ)2

σ2 ∼ χ2(n), and

n∑
i=1

(Xi − X )2

σ2 ∼ χ2(n − 1).

Replacing the parameter µ with its estimator X resulted in a loss
of one degree of freedom.
There are many examples where the degrees of freedom is
reduced by one for each parameter being estimated.
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Student’s t Distribution

Theorem (5.5-3)
Suppose Z and U are independent r.v.’s,
Z ∼ N(0,1), and U ∼ χ2(r).
Then,

T =
Z√
U/r

has a t distribution with r degrees of freedom, denoted t(r).
The p.d.f. for a t distribution is

f (t) =
Γ((r + 1)/2)√
πrΓ(r/2)

1
(1 + t2/r)(r+1)/2 , for t ∈ R.
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Relevance to Samples from Normal Distributions

Corollary

Suppose X1, . . . ,Xn is a random sample from N(µ, σ2).
Then

T =
X − µ
S/
√

n

has a t distribution with n − 1 degrees of freedom.
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The Central Limit Theorem

Theorem (5.6-1)
Suppose X1,X2, . . . is a sequence of IID random variables,
from a distribution with finite mean µ
and finite positive variance σ2.
Let X = 1

n
∑n

i=1 Xi , for n = 1,2, . . .
Then, as n→∞,

X − µ
σ/
√

n
=

∑n
i=1 Xi − nµ√

nσ
⇒ N(0,1).

Advanced texts:
Introduction to Mathematical Statistics, 6th ed., by Hogg, McKean,
and Craig.
Probability and Measure, 3rd ed., by Billingsley.

(Tarleton State University) Chapter Five Notes Spring 2011 25 / 37



Informal Statement of CLT

Informal CLT
Suppose X1, . . . ,Xn is a random sample
from a distribution with finite mean µ
and finite positive variance σ2.
Then, if n is sufficiently large,

X ≈ N(µ, σ2/n), and

n∑
i=1

Xi ≈ N(nµ,nσ2).

Conventionally, values of n ≥ 30 are usually considered
sufficiently large, although this text applies the approximation for
lower values of n, such as n ≥ 20.
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Examples

Example
Consider a random sample of size 3000
from a uniform distribution on the interval [0,1000].
Find (approximately) P(490 < X < 510).
Find

P

(
1,470,000 <

3000∑
i=1

Xi < 1,530,000

)
.
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Lottery Tickets

Example
Consider a $1 scratch-off lottery ticket with the following prize
structure:

Prize($) Probability
0 0.80
2 0.15

10 0.05

Find the expected profit/loss from buying a single ticket. Also find
the standard deviation.
What is the chance of breaking even if you buy one ticket?
If you buy 100 tickets?
If you buy 500 tickets?
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Insurance

Example
An auto insurance company has one million (statistically
independent) customers.
The annual costs incurred by an individual customer due to auto
accidents are summarized below:

Cost($) 0 500 5,000 15,000
Probability 0.80 0.10 0.08 0.02

Also, assume that each customer has at most one accident per
year and has a $500 deductible.
Find the expected value and variance of a single customer’s
claims.
How much money must the company have to cover all of its
customers’ claims with 99% probability?
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Normal Approximation to the Binomial Distribution

Proposition
If np ≥ 5 and n(1− p) ≥ 5, then
b(n,p) ≈ N(np,np(1− p)).

Example
In a city with a population of 10 million people,
55% of the population approves of the mayor.
In a random sample of size 2000,
find the probability that the number of people who approve of the
mayor is between 1060 and 1150 inclusive.

Continuity Correction
When using this approximation to calculate probabilities,
increase the width of the interval by 0.5 at each end.
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Example
Suppose X ∼ b(20,0.3).
Approximate the following probabilities:

I P(2 ≤ X ≤ 8)
I P(2 < X < 8)
I P(2 < X ≤ 8)
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Normal Approximation to the Poisson Distribution

Proposition
If n is sufficiently large,
then Poiss(n) ≈ N(n,n).

Example
A radioactive sample emits β-particles according to a Poisson
process
at an average rate of 35 per minute.
Find the probability that the number of particles emitted
in a 20 minute period exceeds 720.
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Know how to do all homework and quiz problems.
Given the joint p.d.f. of two random variables, be able to determine

I probabilities/expected values involving both random variables

P[(X ,Y ) ∈ A] =

∫ ∫
A

f (x , y) dydx , for any A ⊂ R2.

E [u(X ,Y )] =

∫ ∞
−∞

∫ ∞
−∞

u(x , y)f (x , y) dydx .

I marginal p.d.f.’s and probabilities/expected values involving only
one of the variables

f1(x) =

∫ ∞
−∞

f (x , y) dy .

P(X ∈ A) =

∫
A

f1(x) dx , for any A ⊆ R.

E [u(X )] =

∫ ∞
−∞

u(x)f1(x) dx .
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I conditional p.d.f.’s, conditional mean/variance, and conditional
probabilities

g(x | y) =
f (x , y)

f2(y)
.

E [u(X ) | Y = y ] =

∫ ∞
−∞

u(x)g(x | y) dx .

Var(X | Y = y) = E(X 2 | Y = y)− E(X | Y = y)2.

I the covariance and correlation coefficient

σXY = Cov(X ,Y ) = E(XY )− E(X )E(Y ).

ρ =
Cov(X ,Y )

σXσY
.

I the least squares regression line relating the variables

y = µY + ρ
σY

σX
(x − µX ).
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Be able to find the expected value, variance, and probabilities
involving Y , conditioning on X = x , when X and Y are jointly
normal

µY |x = E(Y | X = x) = µY + ρ
σY

σX
(x − µX ).

σ2
Y |x = Var(Y | X = x) = σ2

Y (1− ρ2).

The conditional distribution of Y given X = x is N(µY |x , σ
2
Y |x ).

Be able to find the distribution of Y = u(X ) using the distribution
function technique or the change of variables formula.

G(y) = P(Y ≤ y) = P(u(X ) ≤ y), and g(y) = G′(y).

g(y) = f [v(y)]|v ′(y)|, where v = u−1.

g(y1, y2) = f [v1(y1, y2), v2(y1, y2)]

∣∣∣∣∣
∣∣∣∣∣ ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣
∣∣∣∣∣ .

Know the material in sections 5.3-5.6 and be able to solve related
problems.
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