Probability and Statistics Notes Chapter Five

Jesse Crawford

Department of Mathematics
Tarleton State University

Spring 2011

Outline

(9) Section 5.2: Transformations of Two Random Variables
(2) Section 5.3: Several Independent Random Variables
(3) Section 5.4: The Moment-Generating Function Technique
(4) Section 5.5: Random Functions Associated with Normal Distributions
(5) Section 5.6: The Central Limit Theorem
(6) Section 5.7: Approximations for Discrete Distributions
(7) Review for Exam 1

Change of Variables in the Bivariate Case

Theorem

- Suppose X_{1} and X_{2} are random variables with joint p.d.f. $f\left(X_{1}, x_{2}\right)$.
- Let $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$.
- Also, assume the transformation is 1-1 and satisfies certain regularity conditions analogous to those in section 5.1.
- Let $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right)$ and $X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)$ be the inverse mappings.
- Then the joint p.d.f. for Y_{1} and Y_{2} is

$$
g\left(y_{1}, y_{2}\right)=f\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right)|J|,
$$

where

$$
J=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right| .
$$

The F Distribution

Definition

- Suppose U and V are independent, and
- $U \sim \chi^{2}\left(r_{1}\right)$ and $V \sim \chi^{2}\left(r_{2}\right)$.
- Then the random variable

$$
W=\frac{U / r_{1}}{V / r_{2}}
$$

is said to have an F distribution with r_{1} and r_{2} degrees of freedom, denoted $F\left(r_{1}, r_{2}\right)$.

- If $0<\alpha<1$, then $F_{\alpha}\left(r_{1}, r_{2}\right)$ is the critical value such that

$$
P\left[W \geq F_{\alpha}\left(r_{1}, r_{2}\right)\right]=\alpha
$$

Proposition

If $W \sim F\left(r_{1}, r_{2}\right)$, then the p.d.f. for W is

$$
f(w)=\frac{\left(r_{1} / r_{2}\right)^{r_{1} / 2} \Gamma\left[\left(r_{1}+r_{2}\right) / 2\right] w^{r_{1} / 2-1}}{\Gamma\left(r_{1} / 2\right) \Gamma\left(r_{2} / 2\right)\left[1+\left(r_{1} w / r_{2}\right)\right]^{\left(r_{1}+r_{2}\right) / 2}} .
$$

Outline

(1) Section 5.2: Transformations of Two Random Variables
(2) Section 5.3: Several Independent Random Variables
(3) Section 5.4: The Moment-Generating Function Technique
(4) Section 5.5: Random Functions Associated with Normal Distributions
(5) Section 5.6: The Central Limit Theorem
6) Section 5.7: Approximations for Discrete Distributions
(- Review for Exam 1

Independence and Random Samples

Definition

- Suppose X_{1}, \ldots, X_{n} are random variables with joint p.d.f. $f\left(x_{1}, \ldots, x_{n}\right)$, and
- let $f_{i}\left(x_{i}\right)$ be the p.d.f. of X_{i}, for $i=1, \ldots, n$.
- Then X_{1}, \ldots, X_{n} are independent if

$$
f\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right)
$$

- If these random variables all have the same distribution, they are said to be identically distributed.
- If X_{1}, \ldots, X_{n} are independent and identically distributed (IID), then they are referred to as a random sample of size n from their common distribution.

Example

- A certain population of women have heights that are normally distributed,
- with mean 64 inches and standard deviation 2 inches.
- Let $\left(X_{1}, X_{2}, X_{3}\right)$ be a random sample of size 3 from this population.
- Find the joint p.d.f. for $\left(X_{1}, X_{2}, X_{3}\right)$.
- Find the probability that everyone's height in the sample exceeds 67 inches.

Proposition

- If X_{1}, \ldots, X_{n} are independent, then for any sets A_{1}, \ldots, A_{n},

$$
P\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=P\left(X_{1} \in A_{1}\right) \cdots P\left(X_{n} \in A_{n}\right)
$$

- Also, for any functions u_{1}, \ldots, u_{n},

$$
E\left[u_{1}\left(X_{1}\right) \cdots u_{n}\left(X_{n}\right)\right]=E\left[u_{1}\left(X_{1}\right)\right] \cdots E\left[u_{n}\left(X_{n}\right)\right]
$$

Mean and Variance of a Linear Combination of R.V.'s

Theorem

- Suppose X_{1}, \ldots, X_{n} are independent R.V.'s
- with means μ_{1}, \ldots, μ_{n}, and
- variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$.
- If $a_{1}, \ldots, a_{n} \in \mathbb{R}$, then

$$
\begin{gathered}
E\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} \mu_{1}+\cdots+a_{n} \mu_{n}, \text { and } \\
\operatorname{Var}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1}^{2} \sigma_{1}^{2}+\cdots+a_{n}^{2} \sigma_{n}^{2} .
\end{gathered}
$$

Mean and Variance of the Sample Mean

Definition

- Let X_{1}, \ldots, X_{n} be a random sample.
- The sample mean is

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Proposition

- Let X_{1}, \ldots, X_{n} be a random sample from a population with
- population mean μ and population variance σ^{2}.
- Then

$$
\begin{aligned}
& E(\bar{X})=\mu, \text { and } \\
& \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n} .
\end{aligned}
$$

Outline

(1) Section 5.2: Transformations of Two Random Variables
(2) Section 5.3: Several Independent Random Variables
(3) Section 5.4: The Moment-Generating Function Technique
(4) Section 5.5: Random Functions Associated with Normal Distributions
(5) Section 5.6: The Central Limit Theorem
6) Section 5.7: Approximations for Discrete Distributions
(- Review for Exam 1

m.g.f. of a Linear Combination

Theorem (5.4-1)

- Suppose X_{1}, \ldots, X_{n} are independent R.V.s with
- moment-generating functions $M_{X_{i}}(t)$, for $i=1, \ldots, n$.
- Then the moment-generating function of $Y=\sum_{i=1}^{n} a_{i} X_{i}$ is

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}\left(a_{i} t\right)
$$

Example (5.4-2)

- Suppose $0 \leq p \leq 1$, and
- X_{1}, \ldots, X_{n} all have a Bernoulli(p) distribution.
- Find the distribution of $Y=\sum_{i=1}^{n} X_{i}$.

Corollaries for Random Samples

Corollary (5.4-1)

- Suppose X_{1}, \ldots, X_{n} is a random sample
- from a distribution with m.g.f. $M(t)$.
- Then the m.g.f. of $Y=\sum_{i=1}^{n} X_{i}$ is

$$
M_{Y}(t)=[M(t)]^{n} \text {, and }
$$

- the m.g.f. of \bar{X} is

$$
M_{\bar{X}}(t)=\left[M\left(\frac{t}{n}\right)\right]^{n} .
$$

Example (5.4-3)

- Suppose $\left(X_{1}, X_{2}, X_{3}\right)$ is a random sample from
- an exponential distribution with mean θ.
- Find the distributions of $Y=X_{1}+X_{2}+X_{3}$ and \bar{X}.

Theorem (5.4-2)

- If X_{1}, \ldots, X_{n} are independent, and
- $X_{i} \sim \chi^{2}\left(r_{i}\right)$, for each i, then

$$
X_{1}+\cdots+X_{n} \sim \chi^{2}\left(r_{1}+\cdots+r_{n}\right) .
$$

Corollary (5.4-2)
If Z_{1}, \ldots, Z_{n} are independent standard normal R.V.'s, then

$$
W=Z_{1}^{2}+\cdots+Z_{n}^{2} \sim \chi^{2}(n) .
$$

Corollary (5.4-3)

- If X_{1}, \ldots, X_{n} are independent, and each $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, then

$$
W=\sum_{i=1}^{n} \frac{\left(X_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}} \sim \chi^{2}(n) .
$$

Outline

(1) Section 5.2: Transformations of Two Random Variables
(2) Section 5.3: Several Independent Random Variables
(3) Section 5.4: The Moment-Generating Function Technique

4 Section 5.5: Random Functions Associated with Normal Distributions
(5) Section 5.6: The Central Limit Theorem

6 Section 5.7: Approximations for Discrete Distributions
(1) Review for Exam 1

Linear Combinations of Independent Normal R.V.'s

Theorem (5.5-1)

- Suppose X_{1}, \ldots, X_{n} are independent, and
- $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, for $i=1, \ldots, n$.
- Then

$$
Y=\sum_{i=1}^{n} c_{i} X_{i} \sim N\left(\sum_{i=1}^{n} c_{i} \mu_{i}, \sum_{i=1}^{n} c_{i}^{2} \sigma_{i}^{2}\right) .
$$

Example (5.5-1)

- Suppose X_{1} and X_{2} are independent normal random variables,
- $X_{1} \sim \mathrm{~N}(693.2,22820)$, and $X_{2} \sim \mathrm{~N}(631.7,19205)$.
- Find $P\left(X_{1}>X_{2}\right)$.

Sample Mean and Variance for a Normal Population

Theorem (5.5-2)

- Let $\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from $N\left(\mu, \sigma^{2}\right)$.
- Then the sample mean

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- and the sample variance,

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

- are independent. Their distributions are

$$
\bar{X} \sim N\left(\mu, \sigma^{2} / n\right), \text { and } S^{2} \sim \frac{\sigma^{2}}{n-1} \chi^{2}(n-1)
$$

Example

- Consider a population of women whose heights are
- normally distributed with mean 64 inches
- and standard deviation 2 inches.
- For a sample of size $n=10$, find $P(63<\bar{X}<65)$, and
- find constants a and b such that $P\left(a<S^{2}<b\right)=0.95$.
- Repeat the problem when $n=81$.

Unbiasedness of \bar{X} and S^{2}

- From Theorem 5.5-2, we have

$$
E[\bar{X}]=\mu, \text { and } E\left[S^{2}\right]=\sigma^{2}
$$

- \bar{X}, the sample mean, is used to estimate the population mean μ.
- S^{2}, the sample variance, is used to estimate the population variance σ^{2}.
- On average, each of these estimators are equal to the parameters they are intended to estimate.
- That is, \bar{X} and S^{2} are unbiased.

Remarks about Degrees of Freedom

- In the proof of Theorem 5.5-2, we noted that

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n), \text { and } \\
& \sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)
\end{aligned}
$$

- Replacing the parameter μ with its estimator \bar{X} resulted in a loss of one degree of freedom.
- There are many examples where the degrees of freedom is reduced by one for each parameter being estimated.

Student's t Distribution

Theorem (5.5-3)

- Suppose Z and U are independent r.v.'s,
- $Z \sim N(0,1)$, and $U \sim \chi^{2}(r)$.
- Then,

$$
T=\frac{Z}{\sqrt{U / r}}
$$

has a t distribution with r degrees of freedom, denoted $t(r)$.

- The p.d.f. for a t distribution is

$$
f(t)=\frac{\Gamma((r+1) / 2)}{\sqrt{\pi r} \Gamma(r / 2)} \frac{1}{\left(1+t^{2} / r\right)^{(r+1) / 2}}, \text { for } t \in \mathbb{R}
$$

Relevance to Samples from Normal Distributions

Corollary

- Suppose X_{1}, \ldots, X_{n} is a random sample from $N\left(\mu, \sigma^{2}\right)$.
- Then

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

has at distribution with $n-1$ degrees of freedom.

Outline

(1) Section 5.2: Transformations of Two Random Variables
(2) Section 5.3: Several Independent Random Variables
(3) Section 5.4: The Moment-Generating Function Technique
(4. Section 5.5: Random Functions Associated with Normal Distributions
(5) Section 5.6: The Central Limit Theorem
(6) Section 5.7: Approximations for Discrete Distributions
(7) Review for Exam 1

The Central Limit Theorem

Theorem (5.6-1)

- Suppose X_{1}, X_{2}, \ldots is a sequence of IID random variables,
- from a distribution with finite mean μ
- and finite positive variance σ^{2}.
- Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, for $n=1,2, \ldots$
- Then, as $n \rightarrow \infty$,

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} \Rightarrow N(0,1) .
$$

Advanced texts:

- Introduction to Mathematical Statistics, 6th ed., by Hogg, McKean, and Craig.
- Probability and Measure, 3rd ed., by Billingsley.

Informal Statement of CLT

Informal CLT

- Suppose X_{1}, \ldots, X_{n} is a random sample
- from a distribution with finite mean μ
- and finite positive variance σ^{2}.
- Then, if n is sufficiently large,

$$
\begin{aligned}
& \bar{X} \approx \mathrm{~N}\left(\mu, \sigma^{2} / n\right), \text { and } \\
& \sum_{i=1}^{n} X_{i} \approx \mathrm{~N}\left(n \mu, n \sigma^{2}\right) .
\end{aligned}
$$

- Conventionally, values of $n \geq 30$ are usually considered sufficiently large, although this text applies the approximation for lower values of n, such as $n \geq 20$.

Examples

Example

- Consider a random sample of size 3000
- from a uniform distribution on the interval [0, 1000].
- Find (approximately) $P(490<\bar{X}<510)$.
- Find

$$
P\left(1,470,000<\sum_{i=1}^{3000} X_{i}<1,530,000\right) .
$$

Lottery Tickets

Example

Consider a $\$ 1$ scratch-off lottery ticket with the following prize structure:

Prize(\$)	Probability
0	0.80
2	0.15
10	0.05

- Find the expected profit/loss from buying a single ticket. Also find the standard deviation.
- What is the chance of breaking even if you buy one ticket?
- If you buy 100 tickets?
- If you buy 500 tickets?

Insurance

Example

- An auto insurance company has one million (statistically independent) customers.
- The annual costs incurred by an individual customer due to auto accidents are summarized below:

Cost(\$)	0	500	5,000	15,000
Probability	0.80	0.10	0.08	0.02

- Also, assume that each customer has at most one accident per year and has a $\$ 500$ deductible.
- Find the expected value and variance of a single customer's claims.
- How much money must the company have to cover all of its customers' claims with 99% probability?

Outline

(1) Section 5.2: Transformations of Two Random Variables
(2) Section 5.3: Several Independent Random Variables
(3) Section 5.4: The Moment-Generating Function Technique
(4. Section 5.5: Random Functions Associated with Normal Distributions
(5) Section 5.6: The Central Limit Theorem

6 Section 5.7: Approximations for Discrete Distributions
(7) Review for Exam 1

Normal Approximation to the Binomial Distribution

Proposition

- If $n p \geq 5$ and $n(1-p) \geq 5$, then
- $b(n, p) \approx \mathrm{N}(n p, n p(1-p))$.

Example

- In a city with a population of 10 million people,
- 55% of the population approves of the mayor.
- In a random sample of size 2000,
- find the probability that the number of people who approve of the mayor is between 1060 and 1150 inclusive.

Continuity Correction

- When using this approximation to calculate probabilities,
- increase the width of the interval by 0.5 at each end.

Example

- Suppose $X \sim b(20,0.3)$.
- Approximate the following probabilities:

$$
\begin{aligned}
& P(2 \leq X \leq 8) \\
& P(2<X<8) \\
& P(2<X \leq 8)
\end{aligned}
$$

Normal Approximation to the Poisson Distribution

Proposition

- If n is sufficiently large,
- then $\operatorname{Poiss}(n) \approx \mathrm{N}(n, n)$.

Example

- A radioactive sample emits β-particles according to a Poisson process
- at an average rate of 35 per minute.
- Find the probability that the number of particles emitted
- in a 20 minute period exceeds 720.

Outline

(1) Section 5.2: Transformations of Two Random Variables
(2) Section 5.3: Several Independent Random Variables
(3) Section 5.4: The Moment-Generating Function Technique
(4) Section 5.5: Random Functions Associated with Normal Distributions
(5) Section 5.6: The Central Limit Theorem
(6) Section 5.7: Approximations for Discrete Distributions
(7) Review for Exam 1

- Know how to do all homework and quiz problems.
- Given the joint p.d.f. of two random variables, be able to determine
- probabilities/expected values involving both random variables

$$
\begin{aligned}
P[(X, Y) \in A] & =\iint_{A} f(x, y) d y d x, \text { for any } A \subset \mathbb{R}^{2} . \\
E[u(X, Y)] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x, y) f(x, y) d y d x
\end{aligned}
$$

- marginal p.d.f.'s and probabilities/expected values involving only one of the variables

$$
\begin{gathered}
f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y . \\
P(X \in A)=\int_{A} f_{1}(x) d x, \text { for any } A \subseteq \mathbb{R} . \\
E[u(X)]=\int_{-\infty}^{\infty} u(x) f_{1}(x) d x .
\end{gathered}
$$

- conditional p.d.f's, conditional mean/variance, and conditional probabilities

$$
\begin{gathered}
g(x \mid y)=\frac{f(x, y)}{f_{2}(y)} \\
E[u(X) \mid Y=y]=\int_{-\infty}^{\infty} u(x) g(x \mid y) d x \\
\operatorname{Var}(X \mid Y=y)=E\left(X^{2} \mid Y=y\right)-E(X \mid Y=y)^{2}
\end{gathered}
$$

- the covariance and correlation coefficient

$$
\begin{gathered}
\sigma_{X Y}=\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y) \\
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
\end{gathered}
$$

- the least squares regression line relating the variables

$$
y=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)
$$

- Be able to find the expected value, variance, and probabilities involving Y, conditioning on $X=x$, when X and Y are jointly normal

$$
\begin{gathered}
\mu_{Y \mid X}=E(Y \mid X=x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) . \\
\sigma_{Y \mid X}^{2}=\operatorname{Var}(Y \mid X=x)=\sigma_{Y}^{2}\left(1-\rho^{2}\right) .
\end{gathered}
$$

The conditional distribution of Y given $X=x$ is $\mathrm{N}\left(\mu_{Y \mid x}, \sigma_{Y \mid X}^{2}\right)$.

- Be able to find the distribution of $Y=u(X)$ using the distribution function technique or the change of variables formula.

$$
\begin{gathered}
G(y)=P(Y \leq y)=P(u(X) \leq y), \text { and } g(y)=G^{\prime}(y) . \\
g(y)=f[v(y)]\left|v^{\prime}(y)\right|, \text { where } v=u^{-1} . \\
g\left(y_{1}, y_{2}\right)=f\left[v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right]\left\|\begin{array}{|l}
\frac{\partial x_{1}}{\partial y_{1}} \\
\frac{\partial x_{2}}{\partial y_{1}} \\
\frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right\| .
\end{gathered}
$$

- Know the material in sections 5.3-5.6 and be able to solve related problems.

