Probability and Statistics Notes Chapter Six

Jesse Crawford

Department of Mathematics

Tarleton State University

Spring 2011

Outline

(1) Section 6.1: Point Estimation
(2) Section 6.2 Confidence Intervals for Means
(3) Section 6.3: Confidence Intervals for the Difference of Two Means
4. Section 6.4: Confidence Intervals for Variances
(5) Section 6.5: Confidence Intervals for Proportions
(6) Section 6.6: Sample Size

Statistical Models

Definition (Informal)

- A statistical model is a mathematical framework
- used to model random variables,
- where the probability distribution of the variables is not completely known.
- Often, the random variables represent a random sample
- from some population, where
the parametric form of the population distribution is known, but the actual values of the parameters are not.

Important Components of a Statistical Model

- Random variables X_{1}, \ldots, X_{n}, which represent a sample from some population.
- A p.d.f./p.m.f. $f(x ; \theta)$, representing the population distribution.
- The unknown parameter θ, a number related to the population distribution whose value is not known.
- The parameter space, Ω, consisting of all possible values of θ.

Example

- In a large city, the proportion of voters who approve of the mayor is unknown.
- A random sample X_{1}, \ldots, X_{n} is taken from this city, where
- $X_{i}=1$ if the i th voter approves, and $X_{i}=0$ otherwise.
(1) What p.d.f./p.m.f. should be used to model the population?
(2) What type of distribution is this?
(3) What is the unknown parameter, and what does it represent?
(4) What is the parameter space?
(5) Suppose 52% of the sample approves of the mayor. What would be the best estimate for p ?

The Likelihood Function

- We can compactly summarize the assumptions of our statistical model as

$$
X_{1}, \ldots, X_{n} \text { are IID, }
$$

$$
\text { with common distribution } f(x ; \theta) \text {, where } \theta \in \Omega \text {. }
$$

- Therefore, the joint p.d.f./p.m.f. of X_{1}, \ldots, X_{n} is

$$
L(\theta)=L\left(\theta, x_{1}, \ldots, x_{n}\right)=f\left(x_{1} ; \theta\right) \cdots f\left(x_{n} ; \theta\right)
$$

- This function is called the likelihood function.
- The log-likelihood is

$$
I(\theta)=\ln [L(\theta)]
$$

- Intuitively, $L\left(\theta, x_{1}, \ldots, x_{n}\right)$ is the likelihood of observing $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$ when the true value of the parameter is θ.

Maximum Likelihood Estimation

- Consider a random sample X_{1}, \ldots, X_{n} from a statistical model with parameter θ.
- An estimator for θ is any function

$$
\hat{\theta}=\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)
$$

intended to estimate θ based on the sample observations X_{1}, \ldots, X_{n}.

- $\hat{\theta}$ is the maximum likelihood estimator for θ if

$$
L\left[\hat{\theta}\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right]=\max _{\theta \in \Omega} L\left(\theta, x_{1}, \ldots, x_{n}\right),
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{R}$.

- In other words, for any observations x_{1}, \ldots, x_{n}, the MLE $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ is the value of θ that would have given the maximum chance of observing those particular sample values, x_{1}, \ldots, x_{n}.

Proposition

If the population is Bernoulli (p), then the MLE is

$$
\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X}
$$

- Useful when studying a binary characteristic of the population (approves/disapproves of mayor).
- $p=$ the proportion of the population having the characteristic (population proportion).
- $\hat{p}=$ the proportion of the sample having the characteristic (sample proportion).

Example

- A company receives phone calls according to a Poisson process.
- Let X_{1}, \ldots, X_{n} be n waiting times between successive phone calls.
(1) What p.d.f./p.m.f. should be used to model the population?
(2) What type of distribution is this?
(3) What is the unknown parameter, and what does it represent?
(4) What is the parameter space?
(5) What is the MLE for θ ?

Example

- In a laboratory, mice have weights that are normally distributed.
- Let X_{1}, \ldots, X_{n} be a random sample of n mice.
(1) What p.d.f./p.m.f. should be used to model the population?
(2) What type of distribution is this?
(What is the unknown parameter, and what does it represent?
(1) What is the parameter space?
(0. What is the MLE for $\left(\mu, \sigma^{2}\right)$?

Unbiasedness

Definition

- Let $\hat{\theta}$ be an estimator for a parameter θ.
- If $E(\hat{\theta})=\theta$, then $\hat{\theta}$ is called unbiased. Otherwise, it is biased.

Multiple Regression

- A multiple linear regression model is

$$
\begin{gathered}
Y_{i}=\beta_{1} X_{i 1}+\cdots+\beta_{p} X_{i p}+\epsilon_{i}, i=1, \ldots, n \\
\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 p} \\
\vdots & & \vdots \\
X_{n 1} & \cdots & X_{n p}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{p}
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{n}
\end{array}\right) \\
Y=X \beta+\epsilon
\end{gathered}
$$

- It is assumed that $\epsilon \sim \mathrm{N}\left(0, \sigma^{2} I_{n}\right)$
- Y is the observable random vector.
- X can be regarded as an observable constant matrix.
- $\beta \in \mathbb{R}^{p}$ is an unknown parameter vector.
- The MLE for β is

$$
\hat{\beta}=\left(X^{t} X\right)^{-1} X^{t} Y
$$

Method of Moments

- Another method for estimating parameters is the method of moments.
- Suppose the model has r parameters $\theta_{1}, \ldots, \theta_{r}$.
- Equate the first r moments of the distribution to the first r moments of the sample, and solve for the parameters to find estimates for them.

$$
\begin{gathered}
E(X)=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
E\left(X^{2}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \\
\vdots \\
E\left(X^{r}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{r}
\end{gathered}
$$

Outline

(9) Section 6.1: Point Estimation

(2) Section 6.2 Confidence Intervals for Means
(3) Section 6.3: Confidence Intervals for the Difference of Two Means

4 Section 6.4: Confidence Intervals for Variances
(5) Section 6.5: Confidence Intervals for Proportions
(6) Section 6.6: Sample Size

Normal Population with Known Variance

Confidence Interval for μ when

- Population is $\mathbf{N}\left(\mu, \sigma^{2}\right)$, and
- σ is known.

Example

- Consider math SAT scores at a university, and assume
- they are normally distributed,
- the mean is unknown, and
- the standard deviation is known to be 100.
- A random sample of size 200 is taken, and
- the sample mean is 517 .
- Estimate the average math SAT score at this university.
- Find a 95\% confidence interval for the average math SAT score at the university.

Normal Population with Known Variance

Proposition

- If the population is $\mathbf{N}\left(\mu, \sigma^{2}\right)$, and
- the population variance σ^{2} is known, then

$$
P\left[\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]=1-\alpha
$$

- A $1-\alpha$ confidence interval for μ is

$$
\begin{gathered}
{\left[\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right], \text { or equivalently, }} \\
\bar{X} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
\end{gathered}
$$

- The parameter μ is fixed.
- The confidence interval is random.

Normal Population with Unknown Variance

Confidence Interval for μ when

- Population is $\mathbf{N}\left(\mu, \sigma^{2}\right)$, and
- σ is unknown.

Example

- Consider verbal SAT scores at a university, and assume
- they are normally distributed,
- with unknown mean and standard deviation.
- A random sample of size 25 is taken,
- the sample mean is 561,
- and the sample standard deviation is 124.
- Estimate the average verbal SAT score at this university.
- Find a 95\% confidence interval for the average verbal SAT score at the university.

Normal Population with Unknown Variance

Proposition

- If the population is $\mathrm{N}\left(\mu, \sigma^{2}\right)$, and
- the population variance σ^{2} is unknown, then

$$
P\left[\bar{X}-t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}} \leq \mu \leq \bar{X}+t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}\right]=1-\alpha .
$$

- A $1-\alpha$ confidence interval for μ is

$$
\left[\bar{X}-t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}, \bar{X}+t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}\right],
$$

or equivalently,

$$
\bar{X} \pm t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}} .
$$

Large Sample Sizes

Recall that for values of $n>31$,

$$
\begin{gathered}
t(n-1) \approx \mathrm{N}(0,1), \text { so } \\
t_{\alpha / 2}(n-1) \approx z_{\alpha / 2} .
\end{gathered}
$$

Example

- Gas mileages of a certain type of vehicle are normally distributed.
- Gas mileage measurements are made on 100 vehicles, resulting in
- $\bar{X}=33.5$ and $s=5.68$.
- Find a 90% confidence interval for the average gas mileage of all such vehicles.

Approximations for Non-normal Populations

Example

- A sample of 200 mice were exposed to a stimulus,
- and response times were measured, resulting in
- a mean response time of 1.12 seconds,
- and a standard deviation of 0.53 seconds.
- Find a 99% confidence interval for the mean response time in the population.

Approximations for Non-normal Populations

Proposition

- For non-normal populations,
- an approximate $1-\alpha$ confidence interval for μ is

$$
\bar{X} \pm t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}
$$

- assuming that one of the following conditions holds:

$$
n \geq 30 \text {, or }
$$

the population distribution does not depart too far from normality (for example, the approximation should be good for a symmetric, unimodal, continuous population distribution).

One-sided Confidence Intervals

- Interested in a lower bound for μ.
- Use the one-sided $1-\alpha$ confidence interval

$$
\left[\bar{X}-t_{\alpha}(n-1) \frac{s}{\sqrt{n}}, \infty\right)
$$

- (Assuming appropriate conditions are met. Use z_{α} instead where appropriate.)

Example

- Pipes manufactured by a company must have a mean strength \geq $2400 \mathrm{lb} / \mathrm{ft}$.
- In a sample of 150 pipes,
- the mean strength was $2437 \mathrm{lb} / \mathrm{ft}$,
- and the standard deviation was $129 \mathrm{lb} / \mathrm{ft}$.
- Find the relevant one-sided 99\% confidence interval for the mean pipe strength.
- Does it appear that the pipes in the population exceed the strength requirement?

One-sided Confidence Intervals

- Interested in an upper bound for μ.
- Use the one-sided $1-\alpha$ confidence interval

$$
\left(-\infty, \bar{X}+t_{\alpha}(n-1) \frac{s}{\sqrt{n}}\right]
$$

- (Assuming appropriate conditions are met. Use z_{α} instead where appropriate.)

Example

- Mean emissions from car engines are required to be $\leq 20 \mathrm{ppm}$ of carbon.
- The emissions statistics for a sample of 20 engines were
- $\bar{x}=19.78$ and $s=1.84$.
- Find the relevant one-sided 99% confidence interval for the emissions levels.
- Does it appear that the engines in the population meet the emissions standards?

Outline

(9) Section 6.1: Point Estimation

(2) Section 6.2 Confidence Intervals for Means

(3) Section 6.3: Confidence Intervals for the Difference of Two Means

4 Section 6.4: Confidence Intervals for Variances
(5) Section 6.5: Confidence Intervals for Proportions
(6) Section 6.6: Sample Size

Normal Populations with Known Variances

- Suppose X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} are independent samples
- from two normal distributions $\mathrm{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $\mathrm{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$,
- where the variances σ_{X}^{2} and σ_{Y}^{2} are known.
- A $1-\alpha$ confidence interval for $\mu_{X}-\mu_{Y}$ is

$$
\bar{X}-\bar{Y} \pm z_{\alpha / 2} \sqrt{\sigma_{X}^{2} / n+\sigma_{Y}^{2} / m}
$$

Normal Populations with Common Unknown Variance

- Suppose X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} are independent samples
- from two normal distributions $\mathrm{N}\left(\mu_{X}, \sigma^{2}\right)$ and $\mathrm{N}\left(\mu_{Y}, \sigma^{2}\right)$,
- with common, unknown variance σ^{2}.
- A $1-\alpha$ confidence interval for $\mu_{X}-\mu_{Y}$ is

$$
\bar{X}-\bar{Y} \pm t_{\alpha / 2}(n+m-2) S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}
$$

where S_{p} is the pooled estimator of σ,

$$
S_{p}=\sqrt{\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}}
$$

Large Samples

- Suppose X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} are large independent samples ($n, m \geq 30$)
- from two distributions with means μ_{X} and μ_{Y}.
- A $1-\alpha$ confidence interval for $\mu_{X}-\mu_{Y}$ is

$$
\bar{X}-\bar{Y} \pm z_{\alpha / 2} \sqrt{S_{X}^{2} / n+S_{Y}^{2} / m}
$$

- We are not assuming normality, common variance, or known variance

Relevance to Studies

- The most reliable type of study is a randomized controlled experiment.
- Controlled means that at least two groups of subjects are studied, often called a treatment group and a control group.
- An experiment is a study where the investigator determines which subjects are in which groups, as opposed to an observational study, where the investigator simply observes without intervening.
- An experiment is randomized if the investigator assigns subjects to treatment/control groups randomly.
- Medical studies should be double blind. Neither the patient nor the doctors measuring responses to treatments should know who received the treatment.
- This requires patients to take placebos and separate doctors to administer treatments and measure responses.
- If a group is divided into treatment/control randomly, the resulting samples are not independent, but they may be treated as such, because this results in conservative confidence intervals.

Paired Observations

- Suppose $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are n pairs of measurements
- where $E\left(X_{i}\right)=\mu_{X}$ and $E\left(Y_{i}\right)=\mu_{Y}$, for $i=1, \ldots, n$.
- Let $D_{i}=X_{i}-Y_{i}$, for $i=1, \ldots, n$.
- Assuming the populations are normally distributed or the sample size is large ($n \geq 30$),
- a $1-\alpha$ confidence interval for $\mu_{X}-\mu_{Y}$ is

$$
\bar{D} \pm t_{\alpha / 2}(n-1) \frac{S_{D}}{\sqrt{n}}
$$

Outline

(9) Section 6.1: Point Estimation

(2) Section 6.2 Confidence Intervals for Means
(3) Section 6.3: Confidence Intervals for the Difference of Two Means
4) Section 6.4: Confidence Intervals for Variances
(5) Section 6.5: Confidence Intervals for Proportions
6) Section 6.6: Sample Size

Cl for Variance of a Normal Population

- Suppose X_{1}, \ldots, X_{n} is a random sample from $N\left(\mu, \sigma^{2}\right)$,
- and let a and b be constants such that

$$
P\left[a \leq \chi^{2}(n-1) \leq b\right]=1-\alpha
$$

i.e., $\boldsymbol{a}=\chi_{1-\alpha / 2}^{2}(n-1)$ and $b=\chi_{\alpha / 2}^{2}(n-1)$.

- Then a $1-\alpha$ confidence interval for σ^{2} is

$$
\left[\frac{(n-1) S^{2}}{b}, \frac{(n-1) S^{2}}{a}\right]
$$

Outline

(9) Section 6.1: Point Estimation
(2) Section 6.2 Confidence Intervals for Means
(3) Section 6.3: Confidence Intervals for the Difference of Two Means
(4) Section 6.4: Confidence Intervals for Variances
(5) Section 6.5: Confidence Intervals for Proportions
(6) Section 6.6: Sample Size

Mathematical Framework for Proportions

- Consider a population whose subjects have some binary characteristic (approves of mayor or doesn't).
- The proportion of the population with the characteristic is p, the population proportion.
- Mathematically, the population is just Bernoulli(p).
- Let X_{1}, \ldots, X_{n} be a sample from this population, and let $Y=\sum_{i=1}^{n} X_{i}$.
- Then $Y \sim \operatorname{Binomial}(n, p)$.
- The MLE for the population proportion p is the sample proportion

$$
\hat{p}=\frac{Y}{n}=\frac{\sum_{i=1}^{n} X_{i}}{n}=\bar{X}
$$

- Also note that the population mean and variance are

$$
\mu=p \text { and } \sigma^{2}=p(1-p)
$$

- In particular, a good estimator for σ^{2} is

$$
\hat{\sigma}^{2}=\hat{p}(1-\hat{p}) \approx S^{2}
$$

- Therefore, as long as the CLT applies ($n p \geq 5$ and $n(1-p) \geq 5$), all inferences for a population proportion are the same as those for a population mean, using the following dictionary:

Means	Proportions
$\frac{\mu}{X}$	p
S	\hat{p}
$\hat{p}(1-\hat{p})$	

Confidence Intervals for Populations Proportions

If $n \hat{p} \geq 5$ and $n(1-\hat{p}) \geq 5$, a $1-\alpha$ confidence interval for a population proportion is

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

If either $n \hat{p}$ or $n(1-\hat{p})$ is less than 5 , replace \hat{p} with

$$
\tilde{p}=\frac{Y+2}{n+4}
$$

Difference in Population Proportions

- Consider independent samples of sizes n_{1} and n_{2}
- from two populations with proportions p_{1} and p_{2}, respectively.
- A $1-\alpha$ confidence interval for $p_{1}-p_{2}$ is

$$
\hat{p}_{1}-\hat{p}_{2} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

Outline

(9) Section 6.1: Point Estimation

(2) Section 6.2 Confidence Intervals for Means
(3) Section 6.3: Confidence Intervals for the Difference of Two Means
(4) Section 6.4: Confidence Intervals for Variances
(5) Section 6.5: Confidence Intervals for Proportions
(6) Section 6.6: Sample Size

Sample Size for Population Mean

Example

- Suppose you want to estimate the gas mileage of a certain type of car.
- You want a 95% confidence level that is within 2 mpg of the true gas mileage.
- Based on a preliminary study, the standard deviation of the gas mileages is about 5.68 mpg .
- What sample size is required to obtain the desired confidence interval?
- Letting ε denote the desired margin of error, we have

$$
\varepsilon=z_{\alpha / 2} \frac{s}{\sqrt{n}},
$$

- so the necessary sample size is

$$
n=\frac{z_{\alpha / 2}^{2} s^{2}}{\varepsilon^{2}}
$$

Sample Size for Population Proportion

Example

- Suppose the unemployment rate has been near 8% recently.
- We wish to estimate the unemployment rate within 0.001 with a 99% confidence level.
- What sample size is required?

$$
n=\frac{z_{\alpha / 2}^{2} \hat{p}(1-\hat{p})}{\varepsilon^{2}}
$$

Population Proportion with No Preliminary Estimate

Example

- Politician is considering running for governor.
- Wants to estimate her approval rating within 0.03 with 95% confidence.
- What sample size is required?

$$
n=\frac{z_{\alpha / 2}^{2}}{4 \varepsilon^{2}}
$$

Finite Population Correction Factor

- All of our results so far have assumed an infinite population.
- Generally, if the sample size is $\leq 5 \%$ of the population size, the population can be regarded as infinite.
- For finite populations, the variance of the estimators \bar{X} and \hat{p} is multiplied by the finite population correction factor,

$$
\frac{N-n}{N-1}
$$

where $N=$ population size, and $n=$ sample size.

Confidence Intervals for Finite Populations

$$
\begin{gathered}
\bar{X} \pm z_{\alpha / 2} \frac{s}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \\
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}\left(\frac{N-n}{N-1}\right)} .
\end{gathered}
$$

Example

- Consider a population of 750 college algebra students.
- Suppose we want to estimate the proportion p of these students who met certain performance standards on their final exams.
- We would like to estimate p within 0.05 with 95% confidence.
- What sample size is required?

