Math 505

Some Notes on Continuous Random Variables

Definition 0.1. A random variable X is said to be continuous if there exists a function $f: \mathbb{R} \rightarrow[0, \infty)$ such that, for any real numbers $a<b$,

$$
P(a<X<b)=\int_{a}^{b} f(x) d x
$$

The function f is called the probability density function (p.d.f.) of X.
Any p.d.f. must satisfy these properties

- $\int_{-\infty}^{\infty} f(x) d x=1$
- $f(x) \geq 0$ for (almost) every $x \in \mathbb{R} .^{1}$

Example 0.2. Let $\theta>0$. Then X has an exponential distribution with parameter θ if its p.d.f. is

$$
f(x)= \begin{cases}\frac{1}{\theta} e^{-x / \theta}, & \text { if } x>0 \\ 0, & \text { if } x \leq 0\end{cases}
$$

For instance, if X has an exponential distribution with $\theta=5$, then

$$
P(2<X<7)=\int_{2}^{7} \frac{1}{5} e^{-x / 5} d x=e^{-2 / 5}-e^{-7 / 5}=0.424
$$

Definition 0.3. Suppose X is a continuous random variable with p.d.f. f. Then X is integrable if

$$
\int_{-\infty}^{\infty}|x| f(x) d x \text { is finite. }
$$

If X is integrable, then its expected value is

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

If X is not integrable, then its expected value does not exist.
Example 0.4. If X has an exponential distribution with parameter θ, then

$$
\begin{aligned}
\int_{-\infty}^{\infty}|x| f(x) d x & =\int_{-\infty}^{0}|x| f(x) d x+\int_{0}^{\infty}|x| f(x) d x \\
& =\int_{-\infty}^{0}|x| \cdot 0 d x+\int_{0}^{\infty} x \cdot \frac{1}{\theta} e^{-x / \theta} d x \\
& =\theta
\end{aligned}
$$

In the second integral, $0<x<\infty$, so $|x|=x$, and we integrate by parts to finish the calculation. This shows that $\int_{-\infty}^{\infty}|x| f(x) d x$ is finite, so X is integrable. Its expected value is

[^0]$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x=\theta
$$
using the same approach.
Example 0.5. Let X have a Cauchy distribution, given by the p.d.f.
$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}, \text { for } x \in \mathbb{R}
$$

Then

$$
\begin{aligned}
\int_{-\infty}^{\infty}|x| f(x) d x & =\int_{-\infty}^{\infty} \frac{|x|}{\pi\left(1+x^{2}\right)} d x \\
& =2 \int_{0}^{\infty} \frac{x}{\pi\left(1+x^{2}\right)} d x=\infty
\end{aligned}
$$

Here, we are using symmetry of the function to rewrite the integral, which can be calculated with the substitution $u=1+x^{2}$. Since this integral is infinite, a random variable with a Cauchy distribution is not integrable. Therefore, its expected value does not exist, by definition.

Definition 0.6. Suppose X and Y are two random variables, and $f: \mathbb{R}^{2} \rightarrow[0, \infty)$, such that for all real numbers $a<b$ and $c<d$,

$$
P(a<X<b \text { and } c<Y<d)=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

Then f is called the joint probability density function of X and Y.
Any joint p.d.f. must satisfy these properties

- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x=1$
- $f(x, y) \geq 0$ for (almost) every pair $(x, y) \in \mathbb{R}^{2}$.

Example 0.7. Let X and Y have joint p.d.f.

$$
f(x, y)= \begin{cases}\frac{1}{2} e^{-2 x} & \text { if } 0<x<\infty,-e^{x}<y<e^{x} \\ 0 & \text { otherwise }\end{cases}
$$

This function is nonnegative, so to verify that it's a p.d.f., we perform the following calculation

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x & =\int_{0}^{\infty} \int_{-e^{x}}^{e^{x}} \frac{1}{2} e^{-2 x} d y d x \\
& =\int_{0}^{\infty}\left[\frac{1}{2} e^{-2 x} y\right]_{-e^{x}}^{e^{x}} d x \\
& =\int_{0}^{\infty} \frac{1}{2}\left[e^{-2 x} e^{x}-\left(-e^{-2 x} e^{x}\right)\right] d x \\
& =\int_{0}^{\infty} e^{-x} d x=1
\end{aligned}
$$

Proposition 0.8. If X and Y have a joint p.d.f. f, then the (marginal) p.d.f. of X is

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

Example 0.9. Continuing the above example, the marginal p.d.f. of X is

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

If $x \leq 0$, then $f(x, y)=0$, the above integral will be zero, and $f_{X}(x)=0$. If $x>0$, then this integral is

$$
f_{X}(x)=\int_{-e^{x}}^{e^{x}} \frac{1}{2} e^{-2 x} d y=e^{-x}
$$

Therefore, the marginal p.d.f. of X is

$$
f_{X}(x)= \begin{cases}e^{-x}, & \text { if } x>0 \\ 0, & \text { if } x \leq 0\end{cases}
$$

so X has an exponential distribution with parameter $\theta=1$.
Definition 0.10. Suppose X and Y have joint p.d.f. f and X has marginal p.d.f. f_{X}. Then the conditional p.d.f. of Y given $X=x$ is

$$
f(y \mid x)=\frac{f(x, y)}{f_{X}(x)}
$$

The conditional expected value of Y given $X=x$ is then

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y f(y \mid x) d y
$$

assuming that the integral converges absolutely, meaning

$$
\int_{-\infty}^{\infty}|y| f(y \mid x) d y \text { is finite. }
$$

Example 0.11. For the above example,

$$
\begin{align*}
f(y \mid x) & =\frac{f(x, y)}{f_{X}(x)}=\frac{\frac{1}{2} e^{-2 x}}{e^{-x}}=\frac{1}{2} e^{-x}, \text { for } 0<x<\infty,-e^{x}<y<e^{x} \tag{0.1}\\
E(Y \mid X=x) & =\int_{-\infty}^{\infty} y f(y \mid x) d y=\int_{-e^{x}}^{e^{x}} y \cdot \frac{1}{2} e^{-x} d y=0, \text { for } 0<x<\infty
\end{align*}
$$

It's easy to check that this integral converges absolutely, so the conditional expected value does indeed exist. Let's take a moment to consider what this means.

The p.d.f. of X is only positive when $x>0$, so with probability $1, X$ is positive. Assuming X has taken a particular value x, which is positive, the p.d.f. for Y is given in equation (0.1). Now, this p.d.f. does not depend at all on y. In other words, the conditional distribution of Y given $X=x$ is uniform on the interval $\left(-e^{x}, e^{x}\right)$. Since an interval of this form is symmetric about 0 , it makes sense that the conditional expected value of Y given $X=x$ is 0 , regardless of what x is.

4

What about $E(Y)$, the unconditional expected value of Y ? This only exists if Y is integrable, meaning that the following integral is finite.

$$
\begin{aligned}
\int_{-\infty}^{\infty}|y| f_{Y}(y) d y & =\int_{-\infty}^{\infty}|y|\left[\int_{-\infty}^{\infty} f(x, y) d x\right] d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|y| f(x, y) d y d x \\
& =\int_{0}^{\infty} \int_{-e^{x}}^{e^{x}}|y| \cdot \frac{1}{2} e^{-2 x} d y d x \\
& =\int_{0}^{\infty} \frac{1}{2} e^{-2 x} \int_{-e^{x}}^{e^{x}}|y| d y d x \\
& =\int_{0}^{\infty} \frac{1}{2} e^{-2 x} \cdot 2 \int_{0}^{e^{x}} y d y d x \\
& =\int_{0}^{\infty} \frac{1}{2} e^{-2 x} e^{2 x} d x \\
& =\int_{0}^{\infty} \frac{1}{2} d x=\infty
\end{aligned}
$$

Therefore, we have just seen an example where $E(Y \mid X)=0$ for all possible values of X, but Y is not integrable, so $E(Y)$ does not exist.

[^0]: ${ }^{1} f$ could be negative on a set of "measure zero", such as a finite set or a countably infinite set, but there is always a version of f that is nonnegative for every $x \in \mathbb{R}$, so this technicality is usually not important.

