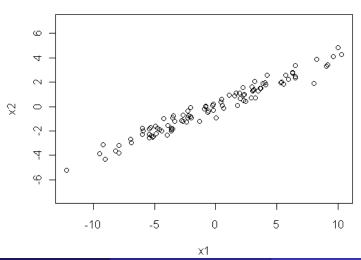
Math 5366 Notes Principal Components

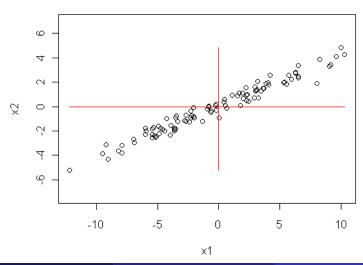
Jesse Crawford

Department of Mathematics Tarleton State University

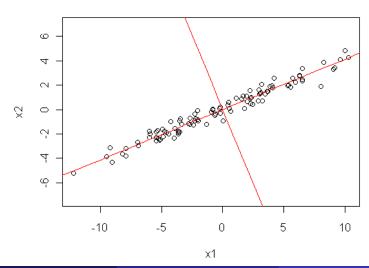
- Two variables X_1 and X_2
- Scatterplot:



Typical Coordinate System



Principal Components



Principal Components

Definition

- Consider a p-dimensional random vector X with covariance matrix
 Σ. Assume Σ is positive definite.
- Define

$$\lambda_1 = \max\{\operatorname{Var}(a'X) \mid a \in \mathbb{R}^p, a'a = 1\}.$$

- The vector a_1 where this maximum is attained is called the *first* principal component.
- Define

$$\lambda_2 = \max\{\operatorname{Var}(a'X) \mid a \in \mathbb{R}^p, a'a = 1, \operatorname{cov}(a'X, a'_1X) = 0\}.$$

 The vector a₂ where this maximum is attained is called the second principal component.

Principal Components (cont.)

Definition

Define

$$\lambda_j = \max\{ \operatorname{Var}(a'X) \mid a \in \mathbb{R}^p, a'a = 1, \\ \operatorname{cov}(a'X, a'_kX) = 0, k = 1, \dots, j-1 \}.$$

- The vector a_j where this maximum is attained is called the jth principal component.
- There are p principle components a_1, \ldots, a_p , and $\lambda_j = \text{Var}(a'_j X)$ for each j.

Converting to Linear Algebra

$$cov(a'X, b'X) = a'\Sigma b$$

$$Var(a'X) = a'\Sigma a$$

$$\lambda_j = \max\{ \operatorname{Var}(a'X) \mid a \in \mathbb{R}^p, a'a = 1, \\ \operatorname{cov}(a'X, a'_kX) = 0, k = 1, \dots, j-1 \}.$$

$$\lambda_j = \max\{a' \Sigma a \, | a \in \mathbb{R}^p, a'a = 1, \ a' \Sigma a_k = 0, k = 1, \dots, j-1\}.$$

Relation to Eigenvectors and Eigenvalues

Theorem

- Let $\lambda_1 \ge \cdots \ge \lambda_p > 0$ be the eigenvalues of Σ .
- Let a_1, \ldots, a_p be the corresponding orthonormal eigenvectors.
- Then the principal components are a_1, \ldots, a_p , and $\lambda_j = Var(a_j'X)$ for each j.

Spectral Theorem: Every real, symmetric matrix has an orthonormal eigenbasis.

$$(a_1 \cdots a_p)' \Sigma (a_1 \cdots a_p) = \left(\begin{array}{ccc} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_p \end{array} \right)$$

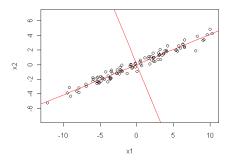
Implementation in R

```
Console ~/ 🖒
> X=cbind(x1,x2)
> S=cov(X)
> 5
         x1
                   x2
x1 25.06959 10.262922
x2 10.26292 4.375917
> eigen(s)
$values
[1] 29.2961784 0.1493335
$vectors
                      [,2]
           [,1]
[1,] -0.9246567 0.3808018
[2,] -0.3808018 -0.9246567
> v1=eigen(S)$vectors[,1]
> v2=eigen(S)$vectors[,2]
> v1
[1] -0.9246567 -0.3808018
> v2
[1] 0.3808018 -0.9246567
>
```

R Provides Orthonormal Eigenvectors

Scatterplot with Principal Components

```
plot (x1,x2,asp=1)
lines (xrange, v1[2]/v1[1]*xrange, col='red')
lines (xrange, v2[2]/v2[1]*xrange, col='red')
```



Non-centered data will require intercept terms.

Dimension Reduction

• Last example: $\lambda_1 = 29.3$ and $\lambda_2 = 0.15$.

Total Variance = trace(
$$S$$
) = $\lambda_1 + \lambda_2 = 29.5$

Principal Component	% of Variance	Cumulative % of Var
<i>a</i> ₁	99.5%	99.5%
a_2	0.5%	100%

 Rule of thumb: We can reduce the number of principal components to a set accounting for 90% or more of the total variance.

Applications

- It is often better to start with a correlation matrix instead of a covariance matrix so that each variable has comparable variability (R command: cor(X)).
- PCA can be used to reduce the dimension of a data set.
- It can be used to identify size and shape factors for biological organisms or other objects.
- Can be used to reduce variables in a regression model to avoid multicollinearity.
- Warning: principal components explaining over 90% of total variance may not be the best set of predictors, so one should remove the minimal number of principal components required to avoid multicollinearity.