
Calculus II Review Four

For problems 1 through 9, determine whether or not the series converges, and state which
convergence test was used.

1.
∞∑
n=0

1

5n

2.
∞∑
n=0

n

n+ 6

3.
∞∑
n=2

1

n(lnn)2

4.
∞∑
n=1

1

n

5.
∞∑
n=1

1

n4(n!)

6.
∞∑
n=7

√
1 + n3

n− 6

7.
∞∑
n=1

(−1)n 1
n

8.
∞∑
n=1

3nn2

n!

9.
∞∑
n=1

(2n3 + 1)n

n2n

10. Find the interval and radius of convergence for the power series
∞∑
n=1

1

n
(x− 5)n.
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Answers

1. This is a geometric series with r = 1
5 (see p. 706). Since |r| < 1, the series converges to

1

1− 1
5

=
5

4
.

(Note that
∑∞

n=1 r
n−1 =

∑∞
n=0 r

n, so the expressions for geometric series given in the book
and in class are equivalent).

2. Note that n
n+6 → 1. Because n

n+6 6→ 0, the series
∑∞

n=0
n

n+6 is divergent by the divergence
test (p. 709).

3. The function f(x) = 1
x(lnx)2

is a continuous, positive, decreasing function on the interval
[2,∞). By the integral test (p. 716), the series

∑∞
n=2

1
n(lnn)2

converges if and only if the
integral

∫∞
2

1
x(lnx)2

dx converges.

Using the substitution u = lnx, which yields du = 1
x dx, the integral is∫ ∞

2

1

x(lnx)2
dx =

∫ ∞
ln 2

1

u2
du = −1

u

∣∣∣∣∞
ln 2

=
1

ln 2
.

Since the integral converges, the series converges by the integral test.

4. This is a p-series with p = 1 (p. 717). Since p ≤ 1, the series diverges.

5. On this problem, we use the comparison test (p. 722). Note that 1
n4(n!)

and 1
n4 both have

positive terms, and

1

n4(n!)
≤ 1

n4
, for all n ≥ 1.

Also,
∑∞

n=1
1
n4 is a p-series with p = 4, so it converges. Therefore,

∑∞
n=1

1
n4(n!)

converges by
the comparison test.

6. Notice that

√
1 + n3

n− 6
≈
√
n3

n
=

n3/2

n
=

1

n−1/2
.

This suggests comparing
∑∞

n=7

√
1+n3

n−6 to
∑∞

n=7
1

n−1/2 using the limit comparison test (p. 724).

√
1+n3

n−6
1

n−1/2

→ 1.

By the limit comparison test,
∑∞

n=7

√
1+n3

n−6 and
∑∞

n=7
1

n−1/2 either both converge or both di-
verge. Since

∑∞
n=7

1
n−1/2 diverges (it’s a p-series with p = −1

2 ), the original series diverges.
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7. This is an alternating series (p. 727) with bn = 1
n , and

•
bn+1 =

1

n+ 1
≤ 1

n
= bn, for all n

•
bn =

1

n
→ 0.

Therefore, the series converges by the alternating series test.

8. The factors 3n and n! suggest using the ratio test (p. 734).

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣∣∣
3n+1(n+1)2

(n+1)!

3nn2

n!

∣∣∣∣∣∣ =
∣∣∣∣3n+1(n+ 1)2n!

3nn2(n+ 1)!

∣∣∣∣ = 3(n+ 1)2

(n+ 1)n2
→ 0,

since the degree of the denominator is greater than the degree of the numerator. Because the
limit is less than 1, the series converges by the ratio test.

9. The fact that both 2n3 + 1 and n have been raised to the power of n suggests using the root
test (p. 736).

n
√
|an| =

n

√
(2n3 + 1)n

n2n
=

2n3 + 1

n2
→∞,

since the degree of the numerator is greater than the degree of the denominator. Because the
limit is greater than 1, the series diverges by the root test.

10. To find the interval of convergence of a power series, we always start with the ratio test.

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣∣ 1
n+1(x− 5)n+1

1
n(x− 5)n

∣∣∣∣∣ = n

n+ 1
|x− 5| → |x− 5|.

According to the ratio test, the series converges if |x − 5| < 1, so the radius of convergence
is 1 and the series converges on the interval (4, 6). We need to check the endpoints 4 and 6
separately.

Plugging in x = 4 yields the series
∑∞

n=1(−1)n
1
n , which converges by the alternating series

test.

Plugging in x = 6 yields the series
∑∞

n=1
1
n , which is a divergent p-series.

Therefore, the interval of convergence is [4, 6) and the radius is 1.

3


