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Abstract

An important classical problem is testing whether several centered
multivariate normal distributions have the same covariance matrix,
which is equivalent to testing that certain Wishart distributions have
the same natural parameter. Wishart distributions, which are sup-
ported on sets of positive definite matrices, are a special case of
generalized Riesz distributions, which are supported on sets of ma-
trices related to the Markov properties of decomposable undirected
graphs. This leads to the problem of testing whether several gen-
eralized Riesz distributions have the same natural parameter. In
this paper, we derive the likelihood ratio statistic for this testing
problem and find its moments.
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1. Introduction

Neyman and Pearson (1931) derived the likelihood ratio statistic for testing
that several normal populations all have the same variance, and they found its
moments, allowing its distribution to be approximated, cf. Box (1949). Wilks (1932)
then solved this problem in the multivariate setting by finding the moments of
the likelihood ratio statistic for testing homogeneity of covariance matrices. In
this article, an analogous problem is solved for the generalized Riesz distributions
developed by Andersson and Klein (2010). Namely, we find the moments of the
likelihood ratio statistic for testing whether several generalized Riesz distributions
have the same natural parameter. To begin, the classical problems described above
are summarized, cf. Chapter 10 of Anderson (2003) for more details.

Suppose (X
(k)
α | α = 1, . . . , Nk) is a random sample from N(µ(k),Σk), the

multivariate normal distribution with mean µ(k) and covariance matrix Σk, for
k = 1, . . . ,K. The classical hypothesis of homogeneity of covariance matrices is
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Hc
0 : Σ1 = · · · = ΣK . (1)

Denoting the sample covariance matrix for the kth sample by Σ̂k, the estimator for
the common covariance matrix under Hc

0 is

Σ̂ =
1

N

K∑
k=1

NkΣ̂k,

where N =
∑K
k=1Nk, and the likelihood ratio statistic for testing Hc

0 is

qc =

∏K
k=1 |Σ̂k|Nk/2

|Σ̂|N/2
.

Bartlett (1937) conjectured that the test based on qc is biased and recommended
replacing each Nk with Nk−1 and therefore replacing N with N−K. Brown (1939)
confirmed that the test based on qc is biased in the univariate case, and Pitman
(1939) demonstrated the unbiasedness of Bartlett’s modification in the univariate
case. These results were later extended to the multivariate setting by Sugiura
and Nagao (1968), Perlman (1980), and others, cf. Perlman’s introduction and
references.

Because we are primarily interested in the covariance structure, we will modify
the problem by assuming

µ(1) = · · · = µ(K) = 0. (2)

Each sample can now be replaced by the sufficient statistic Σ̂k, which has a Wishart
distribution with expectation Σk and Nk degrees of freedom. This distribution is
denoted by WΣk,λk

, where λk = Nk/2 is the shape parameter, cf. Section 2.
Now, under the additional assumption (2), the testing problem (1) is equivalent

to testing whether the Wishart-distributed variables Σ̂1, . . . , Σ̂K all have the same
expectation parameter.

The natural parameter for a WΣ,λ distribution is ∆ = λΣ−1, and in particular,

the random variable λkΣ̂k has natural parameter Σ−1
k , for k = 1, . . . ,K. Therefore,

the Wishart-distributed random variables Σ̂1, . . . , Σ̂K all have the same expectation
parameter if and only if the Wishart-distributed random variables λ1Σ̂1, . . . , λKΣ̂K
all have the same natural parameter, reformulating the testing problem as a test of
equality of natural parameters for Wishart distributions.

Wishart distributions have been generalized to classical Riesz distributions by
Hassairi and Lajmi (2001) and to generalized Riesz distributions by Andersson and
Klein (2010). Generalized Riesz distributions arise when estimating the covariance
matrix of a sample from a Gaussian graphical model, cf. Proposition 3.15. Given
several such samples with covariance matrices Σ1, . . . ,ΣK , a natural testing problem
to consider is

HGM
0 : Σ1 = · · · = ΣK ,

a generalization of the classical testing problem described above. The classical
problem reduced to testing that several Wishart-distributed random variables have
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the same natural parameter, and as discussed in Section 3.4, testing HGM
0 is equiv-

alent to testing that several generalized Riesz distributions have the same natural
parameter.

Testing equality of natural parameters for several generalized Riesz distributions
is examined in Section 5, culminating in the moments of the likelihood ratio statistic
in Theorem 5.3. Beforehand, classical Wishart distributions are covered briefly in
Section 2, and the theory of generalized Riesz distributions from Andersson and
Klein (2010) is discussed in Section 3.

Generalized Riesz distributions are defined with respect to an acyclic mixed
graph V, which defines a recursive structure on a decomposable undirected graph
U , and some theorems about these distributions can be proved using induction on
the number of boxes in V, cf. Proposition 3.13. In fact, this is the strategy used to
prove Theorem 5.3, but the induction step requires the moments of the likelihood
ratio statistic of another testing problem, which are obtained in Section 4 using an
invariance argument.

2. Classical Wishart Distributions

Let V be a finite set, and let PD(V ) and S(V ) be the sets of all real positive
definite and symmetric V × V matrices, respectively.1 Given a sample of size N
from a centered multivariate normal distribution on RV with covariance matrix
Σ ∈ PD(V ), the empirical covariance matrix Σ̂ has a classical Wishart distribution
with expectation Σ and shape parameter λ = N/2, denoted WΣ,λ, cf. Wishart
(1928). Its density is

dWΣ,λ(S) :=
π−

V (V−1)
4 λλV |S|λ−V +1

2∏
(Γ(λ− i−1

2 ) | i = 1, . . . , V )|Σ|λ
exp{−λtr(Σ−1S)}dS,

where |S| denotes the determinant of S ∈ PD(V ), and dS is the standard Lebesgue
measure on S(V ) restricted to PD(V ). Actually, the Wishart distribution is well
defined for any λ > V−1

2 . The parameter Σ deserves its name, since E(WΣ,λ) = Σ,
where E(·) denotes expectation.

The statistical model2 (WΣ,λ ∈ P(S(V )) | Σ ∈ PD(V )) is a full regular expo-
nential family in its expectation parameterization, and the corresponding natural
parameter is ∆ := λΣ−1. Denoting a Wishart distribution with natural parameter
∆ and shape parameter λ as W∆,λ, the density is

dW∆,λ(S) =
π−

V (V−1)
4 |∆|λ|S|λ−V +1

2∏
(Γ(λ− i−1

2 ) i = 1, . . . , V )
exp{−tr(∆S)}dS.

If S ∼W∆,λ, and α > 0, then

1A real V ×V matrix is a mapping from V ×V into R, and a vector in RV is a mapping from V
to R. For classical Wishart distributions, they can be regarded as ordinary |V |× |V | matrices and

|V |-dimensional vectors, where |V | is the cardinality of V . Throughout this article, the cardinality
of any set A will simply be denoted by A.

2A statistical model is a family (Pθ ∈ P(Ω) | θ ∈ Θ) of probability measures on the same
measurable space Ω, belonging to the set P(Ω) of all probability measures on Ω, parameterized

by a set Θ called the parameter set.
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E[|S|α] =
∏(

Γ(α+ λ+ 1−i
2 )

Γ(λ+ 1−i
2 )

i = 1, . . . , I

)
|∆|−α. (3)

3. Generalized Riesz Distributions

Wishart distributions provide a flexible family of probability distributions on
PD(V ). Generalized Riesz distributions generalize these distributions to P(U), a
projection of the set PD(U) of covariance matrices satisfying the Markov proper-
ties for a decomposable undirected graph U . This section presents the important
properties of these distributions that will be needed later, cf. Andersson and Klein
(2010).

3.1 . Graph Theoretic Preliminaries. Let U = (V, F ) be a decomposable undi-
rected graph (DUG) with vertex set V and edge set F ⊂ V ×V , cf. Lauritzen (1996)
for some basic concepts in graph theory. The undirected graph U is assumed to be
decomposable so that it will have a representation as an acyclic mixed graph, as
described in Definition 3.1. Define

S(U) := {S ∈ S(V ) Suv = 0 for all u, v ∈ V with u 6= v and (u, v) 6∈ F}.

This is a subspace of S(V ) with projection mapping pU = p : S(V )→ S(U) defined
by

p(S)uv :=

{
Suv if (u, v) ∈ F or u = v

0 if (u, v) 6∈ F and u 6= v
, (4)

for all S ∈ S(V ). Define PD0(U) := S(U) ∩PD(V ) and PD(U) := PD0(U)−1. A
centered normal distribution on RV with covariance matrix Σ ∈ PD(V ) satisfies
the Markov properties given by U if and only if Σ ∈ PD(U).

The strong, weak, and pairwise Markov properties are equivalent in this case,
cf. Chapter 3 of Lauritzen (1996) for an overview of Markov properties given by
undirected graphs. They are also equivalent to the LWF Markov properties from
Lauritzen and Wermuth (1989) and Frydenberg (1990) and the alternative Markov
property (AMP) from Andersson et al. (2001), all of which are defined for acyclic
mixed graphs.

Let C be the set of cliques in U , and define

P(U) := {S ∈ S(U) SC ∈ PD(C), for every C ∈ C},
where SA is the A×A submatrix3 of S, for any A ⊆ V . The mapping

PD(U) → P(U)
S 7→ p(S)

(5)

is bijective, and the inverse mapping is denoted by

P(U) → PD(U)

S 7→ S̃ := p−1(S).
(6)

3The A×B submatrix is denoted by SA×B .
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Suppose V is an acyclic mixed graph (AMG) with vertex set V and edge set
F ⊂ V × V . Edges in V can be directed or undirected, i.e., for v1, v2 ∈ V , v1 → v2

means that (v1, v2) ∈ F , but (v2, v1) 6∈ F , and v1 − v2 indicates that (v1, v2) ∈ F
and (v2, v1) ∈ F . For a given vertex v ∈ V , the parents and neighbors of v are

pa(v) ≡ paV(v) := {v′ ∈ V v′ → v},

nb(v) ≡ nbV(v) := {v′ ∈ V v′ − v}.
Define an equivalence relation on V by v ∼ v′ if v = v′ or if there is an undirected

path from v to v′ in V. The corresponding equivalence classes are called boxes, and
the set of equivalence classes is denoted by V/ ∼. When Andersson and Klein
wanted to emphasize that a box B ∈ V/ ∼ is a subset of V , they used the notation
[B] := B. If B and B′ are distinct boxes such that v ∈ [B], v′ ∈ [B′], and v → v′,
then we write B → B′, making the set of boxes into an acyclic directed graph
(ADG). If B 6→ B′, for any B′ ∈ V/ ∼, the box B is called maximal.

The skeleton of V is the undirected graph U(V) := (V, F ∪ F ◦), where F ◦ :=
{(v′, v) | (v, v′) ∈ F}. Given a DUG U , a class of generalized Riesz distributions
is in general only defined relative to a choice of a recursive structure on U , i.e., a
choice of an AMG V with skeleton U , cf. Definition 3.7. This AMG must have the
following two properties for the generalized Riesz distributions to be defined.

• (A1) The subgraphs of V induced by its boxes are complete.
• (A2) The graph V has no triplexes.4

Definition 3.1. If U is a DUG, and V is an AMG with skeleton U satisfying (A1)
and (A2), then V is called a representation of U (as an AMG).

Every DUG can be turned into an ADG without immoralities by converting lines
to arrows, so every DUG has a representation as an AMG.

The assumptions (A1) and (A2) are essential for the construction of generalized
Riesz distributions. As we will see in Proposition 3.13, these distributions are
constructed recursively from Wishart distributions, and in the case where V has only
one box, a generalized Riesz distribution is a Wishart distribution, cf. Remark 3.14.
Because generalized Riesz distributions are defined on P(U), this requires P(U) =
PD(V ) when V has only one box, which requires U to be complete in this case, as
guaranteed by condition (A1).

As mentioned above, the AMP and LWF properties for U are equivalent, and
assumption (A2) implies this is also true for V. Furthermore, condition (A2) is
essential, because it guarantees that U and V are Markov equivalent (wrt. both the
AMP and LWF properties).

Because V satisfies properties (A1) and (A2), pa(v) depends only on which box
contains v, and we define 〈B〉 := pa(v), where v ∈ [B]. Furthermore, these con-
ditions imply that the subsets 〈B〉 and [B] ∪ 〈B〉 induce AMGs with complete
skeletons, making certain submatrices of S invariant under the mappings (5) and
(6).

For the following DUG U , there are 23 possible representations of U as an AMG
V. Ignoring labeling of the vertices, there are only eight, which are displayed in
Figure 1.

4A triplex is an induced subgraph of the form •−• ← • (a flag) or • → • ← • (an immorality).
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a

b

c

d (7)

As mentioned above, every DUG U has a representation V, where V is an acyclic
directed graph. Therefore, why is it worthwhile to define generalized Riesz distri-
butions with respect to AMG’s instead of restricting attention to ADG’s?

Not only do AMG’s provide a larger family of distributions, but every DUG
U has an intrinsic representation as an AMG V. That is, V does not depend on
any arbitrary choices, such as an arbitrary ordering of the vertices, cf. Section 13
of Andersson and Klein (2010). However, the intrinsic representation may not be
an ADG. For instance, the intrinsic representation of the DUG (7) is the AMG in
Figure 1.d.

3.2 . The Fundamental Decompositions. Let U be a DUG with vertex set V , and
let V be a representation of U as an AMG. For S ∈ S(V ) and B ∈ V/ ∼, define
S[B], S〈B〉, S[B〉, and S〈B] to be the [B]× [B], 〈B〉 × 〈B〉, [B]× 〈B〉, and 〈B〉 × [B]
submatrices of S, respectively. Because the subgraph of V induced by [B]∪〈B〉 has

a complete skeleton, S̃[B] = S[B], S̃〈B〉 = S〈B〉, S̃[B〉 = S[B〉, and S̃〈B] = S〈B], for
any S ∈ P(U).

Let M ∈ V/ ∼ be a maximal box, and let VM be the AMG induced by the subset
VM := V \ [M ]. Then we have VM/ ∼ = (V/ ∼) \ {M}. Furthermore, [B], 〈B〉,
S[B], S〈B〉, and S[B〉 remain unchanged when V is replaced by VM , for B ∈ VM/ ∼.
The skeleton UM of VM is the same as the subgraph of U induced by VM .

Let D+(V) denote the convex cone of all V × V block diagonal matrices E =
Diag(EB B ∈ V/ ∼), such that EB ∈ PD([B]), for all B ∈ V/ ∼, and let T1

l (V)
denote the set of all V × V matrices U such that

• Uvv = 1 for v ∈ V , and
• Uuv = 0 if u 6= v and (u, v) 6∈ ∪([B]× 〈B〉 B ∈ V/ ∼).

If the boxes are numbered B1, . . . , BV/∼ so that Bi → Bj implies i < j, then the

matrices U ∈ T1
l (V) are lower block-triangular matrices with identity matrices on

the diagonal and possible extra zeroes below the diagonal.
With these definitions in place, we are now prepared to present several decom-

positions that are fundamental to the theory of generalized Riesz distributions.

Proposition 3.2. The following mapping is bijective.

T1
l (V)×D+(V) → PD0(U)

(U,E) 7→ U tEU

Corollary 3.3. The following mapping is bijective.

T1
l (V)×D+(V) → P(U)

(U,D) 7→ p(U−1D(U t)−1)
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(a)

•

•

•

•

(b)

•

•

•

•

(c)

•

•

•

•

(d)

•

•

•

•

(e)

•

•

•

•

(f)

•

•

•

•

(g)

•

•

•

•

(h)

•

•

•

•

Figure 1. The eight representations of the DUG given in (7),
ignoring labeling of the vertices. Figure 1.d shows the intrinsic
representation.

For ∆ ∈ PD0(U), define the matrices ∆[B]◦ ∈ PD([B]), B ∈ V/ ∼, through

Diag(∆[B]◦ B ∈ V/ ∼) := E, where (U,E) ∈ T1
l (V)×D+(V) such that U tEU = ∆.

Corollary 3.4. Let M ∈ V/ ∼ be a maximal box in V. Then, the mapping
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PD0(UM )× R[M ]×〈M〉 ×PD([M ])→ PD0(U),

(∆M ,ΠM ,ΥM ) 7→
(

1VM
−Πt

M0

0 1[M ]

)(
∆M 0

0 ΥM

)(
1VM

0
−ΠM0 1[M ]

)
=

(
∆M + Πt

M0ΥMΠM0 −Πt
M0ΥM

−ΥMΠM0 ΥM

)
=: ∆, (8)

is a a bijection, where ΠM0 ∈ R[M ]×VM is defined by (ΠM0)[M ]×〈M〉 = ΠM , and
(ΠM0)[M ]×(VM\〈M〉) = 0.

Proposition 3.5. Let M ∈ V/ ∼ be a maximal box in V. Then the mapping

P(UM )× R[M ]×〈M〉 ×PD([M ])→ P(U),

(SM , RM , LM ) 7→ p

((
1VM

0
RM0 1[M ]

)(
S̃M 0
0 LM

)(
1VM

RtM0

0 1[M ]

))
= p

((
S̃M S̃MR

t
M0

RM0S̃M LM +RM0S̃MR
t
M0

))
is a a bijection, where RM0 ∈ R[M ]×VM is defined by (RM0)[M ]×〈M〉 = RM , and
(RM0)[M ]×(VM\〈M〉) = 0. The inverse mapping is

P(U)→ P(UM )× R[M ]×〈M〉 ×PD([M ])

S 7→ (SVM
, S[M〉•, S[M ]•),

where S[M〉• := S[M〉S
−1
〈M〉, and S[M ]• := S[M ] − S[M〉S

−1
〈M〉S〈M ].

In general, if Σ ∈ P(U), and B ∈ V/ ∼, define Σ[B〉• := Σ[B〉Σ
−1
〈B〉, and Σ[B]• :=

Σ[B] − Σ[B〉Σ
−1
〈B〉Σ〈B].

5

Corollary 3.6. Let S ∈ P(U). Setting D := Diag(S[B]• B ∈ V/ ∼) and

U[B]×〈B〉 := −S[B〉•, B ∈ V/ ∼, yields the unique solution (U,D) ∈ T1
l (V)×D+(V)

to the equation S = p(U−1D(U t)−1), cf. Corollary 3.3.

3.3 . Generalized Riesz Distributions. As before, let U be a DUG with vertex
set V , and let V be a representation of U as an AMG. Let ∆ ∈ PD0(U), and
λ = (λB B ∈ V/ ∼) ∈ RV/∼. Define the integral

JV(∆, λ) :=

∫
P(U)

∏
(|S[B]•|λB | B ∈ V/ ∼) exp{−tr(∆S)}dνV(S),

with respect to the measure

dνV(S) :=
∏(

|S[B]•|−
[B]+〈B〉+1

2 |S〈B〉|−
[B]
2 B ∈ V/ ∼

)
dS.

This integral converges if and only if

λB >
[B] + 〈B〉 − 1

2
, for all B ∈ V/ ∼, (9)

In this case,

JV(∆, λ) = cV(λ)
∏

(|∆[B]◦|−λB | B ∈ V/ ∼),

5If 〈B〉 = ∅, then Σ[B]• = Σ[B].
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where

cV(λ) := π
dim(P(U))−V

2

∏(∏(
Γ(λB − 〈B〉2 −

i−1
2 ) i = 1, . . . , [B]

)
B ∈ V/ ∼

)
.

These calculations lead to the following definition.

Definition 3.7. Let ∆ ∈ PD0(U), and let λ = (λB B ∈ V/ ∼) satisfy condition
(9). Then the probability measure

dR∆,λ(S) :=
π

V−dim(P(U))
2

∏
(|∆[B]◦|λB |B ∈ V/ ∼)

∏
(|S[B]•|λB |B ∈ V/ ∼)∏(∏(

Γ(λB − 〈B〉2 −
i−1

2 ) i = 1, . . . , [B]
)

B ∈ V/ ∼
)

· exp{−tr(∆S)}dνV(S)

is called the generalized Riesz distribution on P(U) with respect to the representa-
tion V of U , with shape parameter λ and natural parameter ∆.

The natural parameters and expectation parameters for generalized Riesz distri-
butions are related by λ-inverse mappings, defined as follows. Let

Σ = p(U−1Diag(Σ[B]• B ∈ V/ ∼)(U t)−1) (10)

be the decomposition of Σ ∈ P(U) as described in Corollary 3.6. For λ ∈ RV/∼+ ,
the λ-inverse of Σ is defined by

Σ−λ := U tDiag(λBΣ−1
[B]• B ∈ V/ ∼)U ∈ PD0(U). (11)

The mapping

P(U) → PD0(U)
Σ 7→ Σ−λ

is a bijection with inverse

PD0(U) → P(U)
U tDiag(∆[B]◦ B ∈ V/ ∼)U = ∆ 7→ p(U−1Diag(λB∆−1

[B]◦ B ∈ V/ ∼)(U t)−1)

Note that

(Σ−λ)[B]◦ = λBΣ−1
[B]•, for B ∈ V/ ∼ . (12)

Remark 3.8. If λ = (λ0 | B ∈ V/ ∼) for some constant

λ0 > max

{
[B] + 〈B〉 − 1

2
B ∈ V/ ∼

}
,

then the distribution R∆,λ does not depend on the representation V, cf. Remark 8.1
of Andersson and Klein (2010). Also, Σ−λ = λ0Σ−1 in this case.

Proposition 3.9. Let ∆ ∈ PD0(U), let λ = (λB B ∈ V/ ∼) satisfy (9), and let
Σ ∈ P(U) satisfy ∆ = Σ−λ. Then E(R∆,λ) = Σ.

Like Wishart distributions, generalized Riesz distributions can be parameterized by
their expectation parameter, leading to the following definition.
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Definition 3.10. Let Σ ∈ P(U) and λ = (λB B ∈ V/ ∼) satisfy (9). The
generalized Riesz distribution on P(U) with respect to the representation V of U
with shape parameter λ and expectation parameter Σ is denoted by RΣ,λ.

Corollary 3.11. The maximum likelihood estimator for the statistical model

M : (R∆,λ ∆ ∈ PD0(U))

is ∆̂(S) = S−λ.

One more fact about λ-inverse mappings that will be needed to prove Theorem 5.1
is presented in Proposition 3.12.

Proposition 3.12. If Σ ∈ P(U) and λ ∈ RV/∼+ , then

tr(Σ−λΣ) =
∑

(λB [B] | B ∈ V/ ∼).6

Proof. Because Σ−λ ∈ S(U), tr(Σ−λΣ) = tr(Σ−λΣ̃), and the proposition now fol-
lows from Equations (10) and (11). �

The following proposition is fundamental for working with generalized Riesz
distributions, enabling proofs by induction on the number of boxes in V/ ∼. An-
dersson and Klein used this proposition to calculate the expectation of R∆,λ, and
it is essential for calculating the moments of the likelihood ratio statistic for testing
equality of natural parameters.

Proposition 3.13. Let M ∈ V/ ∼ be a maximal box, and let S ∈ P(U) be a
random variable with distribution R∆,λ. Then

• The random variables S[M ]• ∈ PD([M ]) and (S[M〉•, SVM
) ∈ R[M ]×〈M〉 ×

P(UM ) are independent.7

• The random variable S[M ]• ∈ PD([M ]) has a classical Wishart distribution

W
∆[M],λM− 〈M〉2

with shape parameter λM − 〈M〉2 and natural parameter

∆[M ].

• The distribution of (S[M〉•, SVM
) ∈ R[M ]×〈M〉 × P(UM ) is described as fol-

lows: The conditional distribution of S[M〉• given SVM
is N(ΠM , (2∆[M ] ⊗

S〈M〉)
−1), the normal distribution on R[M ]×〈M〉 with expectation ΠM (see

Equation (8)) and precision matrix 2∆[M ]⊗S〈M〉; in particular, this condi-
tional distribution depends on SVM

only through S〈M〉. The distribution of
SVM

is the generalized Riesz distribution R∆M ,λ−M
on P(UM ) with natural

parameter ∆M (see Equation (8)) and shape parameter λ−M := (λB B ∈
VM/ ∼).

Remark 3.14. In the special case that V has only one box, condition (A1) implies
that U is complete, so PD0(U) = P(U) = PD(V ). Therefore, ∆ ∈ PD(V ),
λ ∈ R, and S[M ]• = S, which takes values in PD(V ). Proposition 3.13 then
states that R∆,λ = W∆,λ, that is, generalized Riesz distributions reduce to Wishart
distributions when V has only one box.

6Here, λB [B] is λB times the cardinality of [B].
7For a random variable X, we write X ∈ A when X takes values in A, not when X is an

element of the set A.
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Proposition 3.15 summarizes Example 17.1 of Andersson and Klein (2010), show-
ing that a generalized Riesz distribution arises when estimating the covariance ma-
trix of a sample from a Gaussian graphical model defined by U .

Proposition 3.15. Let U = (V, F ) be a DUG, and suppose (Xα | α = 1, . . . , N)
is a random sample from N(0,Σ), where Σ ∈ PD(U).

• The MLE Σ̂ for Σ exists with probability one if and only if N is greater
than or equal to the cardinality of every clique in U .

• In that case, if V is an arbitrary representation of U as an AMG, then
p(Σ̂) ∼ Rp(Σ),λ, where λ = (N2 | B ∈ V/ ∼).8

Once again, if V has only one box, condition (A1) implies that U is complete,
so it induces vacuous Markov properties. More precisely, the covariance matrix
Σ ∈ PD(U) = PD(V ), so (Xα | α = 1, . . . , N) is just an ordinary sample from a
centered multivariate normal distribution. Also, the projection mapping p is the
identity mapping, and Proposition 3.15 states that

Σ̂ = p(Σ̂) ∼ Rp(Σ),λ = WΣ,λ,

where λ = N
2 , as required by the classical theory.

3.4 . Homogeneity of Covariance Matrices for Gaussian Graphical Models. This
section generalizes the test of homogeneity of covariance matrices discussed in the
introduction to the setting where each multivariate normal sample satisfies the
Markov properties given by a DUG U . This problem is then shown to be equiv-
alent to testing that several generalized Riesz distributions have the same natural
parameter.

Suppose that (X
(k)
α | α = 1, . . . , Nk) is a random sample from N(0,Σk), where

Σk ∈ PD(U), for k = 1, . . . ,K. Each of these normal distributions satisfy the
Markov properties given by U , because their covariance matrices are elements of
PD(U).

Furthermore, assume that Nk is greater than or equal to the cardinality of every
clique in U , so that the MLE Σ̂k for Σk exists with probability one, for k = 1, . . . ,K.
By Proposition 3.15, if V is an arbitrary representation of U as an AMG, then
p(Σ̂k) ∼ Rp(Σk),λk

, where λk = (Nk

2 | B ∈ V/ ∼). Note that the components of λk
do not depend on the boxes B ∈ V/ ∼.

A natural testing problem to consider in this setting is that these covariance
matrices are equal,

HGM
0 : Σ1 = · · · = ΣK , (13)

which is a generalization of the classical test of homogeneity of covariance matrices
presented in the introduction. Because p : PD(U) → P(U) is bijective, this is

equivalent to testing that the random matrices p(Σ̂1), . . . , p(Σ̂K) have the same

expectation parameters. By Proposition 3.9, the natural parameter of p(Σ̂k) is

Σ−λk

k = Nk

2 Σ−1
k , cf. Remark 3.8. Similarly, Nk

2 p(Σ̂k) has natural parameter Σ−1
k .

Therefore, the original testing problem (13) is equivalent to testing whether the
random matrices

8The distribution does not depend on the representation V because the components of λ do
not depend on the boxes B ∈ V/ ∼, cf. Remark 3.8.
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N1

2 p(Σ̂1), . . . , NK

2 p(Σ̂K),

whose distributions are RΣ−1
1 ,λ1

, . . . ,RΣ−1
K ,λK

, have the same natural parameter.

It should be emphasized that the shape parameters in this testing problem are
known, determined by the sample sizesN1, . . . , NK . Although the shape parameters
λk = (Nk

2 | B ∈ V/ ∼) have components that do not depend on the boxes B ∈ V/ ∼,
Section 5 considers the more general setting where the λk’s are arbitrary known
shape parameters satisfying condition (9). Shape parameters whose components
are not identical result from incomplete observations, as discussed in Example 17.2
of Andersson and Klein (2010).

4. A Preliminary Testing Problem

Testing equality of natural parameters for generalized Riesz distributions is dis-
cussed in Section 5. The proof of the main theorem in that section, Theorem 5.3,
requires the moments of the likelihood ratio statistic for a different testing problem,
which are obtained in this section.

Assume I and N are finite index sets, and let Φk ∈ PD(N), lk > I+N−1
2 ,

ξk ∈ RI×N , and δk ∈ PD(I), for k = 1, . . . ,K.9 Based on statistically independent
observable random variables xk ∼ N(ξk, (δk ⊗ Φk)−1) and sk ∼ Wδk,lk−N

2
, k =

1, . . . ,K, we would like to test the hypothesis

H′0 : ξ1 = · · · = ξK , δ1 = · · · = δK

versus the hypothesis H′ that the ξk’s and δk’s are arbitrary elements of RI×N
and PD(I), respectively. The observation space for both H′0 and H′ is (RI×N ×
PD(I))K , which is also the parameter space for H′. The parameter space for H′0 is
RI×N ×PD(I).

Using the notation for statistical models introduced in Section 2, the testing
problem is

H′0 :

(
K⊗
k=1

N(ξ, (δ ⊗ Φk)−1)⊗Wδ,lk−N
2

ξ ∈ RI×N , δ ∈ PD(I)

)
vs.

H′ :

(
K⊗
k=1

N(ξk, (δk ⊗ Φk)−1)⊗Wδk,lk−N
2

ξk ∈ RI×N , δk ∈ PD(I), k = 1, . . . ,K

)
,

where ⊗ denotes product measure.
Our goal for this section is to find the moments of the likelihood ratio statistic

q′ for testing H′0 vs. H′. We begin by finding the maximum likelihood estimators
under H′0 and H′, which requires the following lemma.

Lemma 4.1. Let x ∈ RI×N , s ∈ PD(I), Φ ∈ PD(N), and l > I−1
2 . Assume that

Y is a subspace of R1×N , so that Y I is a subspace of RI×N , and let PY ∈ RN×N
be the matrix for the Φ-orthogonal projection onto Y .10 The maximum value of
the function

9The parameters Φk and lk are assumed to be known, and ξk and δk are unknown.
10The elements of R1×N are row vectors indexed by N , and for any u ∈ R1×N , the projection

of u onto Y is uPY . Vectors u, v ∈ R1×N are Φ-orthogonal if uΦvt = 0.
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f : Y I ×PD(I)→ R+

f(ξ, δ) = exp

{
−1

2
tr
(
δ(x− ξ)Φ(x− ξ)t

)}
|δ|l exp{−tr(δs)}

is attained when ξ = xPY and δ = l( 1
2 (x−xPY )Φ(x−xPY )t+s)−1. The maximum

value is llI | 12 (x− xPY )Φ(x− xPY )t + s|−l exp{−lI}.

Proof. For any ξ ∈ Y I and δ ∈ PD(I),

f(ξ, δ) = exp{−1

2
tr(δ(xPY − ξ)Φ(xPY − ξ)t)}

·|δ|l exp

{
−tr

(
δ

(
1

2
(x− xPY )Φ(x− xPY )t + s

))}
.

Because δ⊗Φ is positive definite, the maximum value of the first factor is attained
when ξ = xPY , regardless of the value of δ ∈ PD(I). By Corollary 3.11 applied
to the classical Wishart distribution, the second factor is maximized when δ =
l( 1

2 (x− xPY )Φ(x− xPY )t + s)−1. �

Theorem 4.2. The maximum likelihood estimators for H′ are ξ̂k = xk and δ̂k =
lks
−1
k , k = 1, . . . ,K. The MLEs for H′0 are

ξ̂ =

K∑
k=1

xkΦkΦ−1, and

δ̂ = l

1

2

K∑
k=1

xkΦkx
t
k −

1

2

(
K∑
k=1

xkΦk

)
Φ−1

(
K∑
k=1

xkΦk

)t
+ s

−1

,

where Φ =
∑K
k=1 Φk, s =

∑K
k=1 sk, and l =

∑K
k=1 lk.

Proof. For fixed observations, the likelihood function for H′ is proportional to

K∏
k=1

exp

{
−1

2
tr(δk(xk − ξk)Φk(xk − ξk)t)

}
|δk|lk exp{−tr(δksk)}.

Applying Lemma 4.1 to the kth factor with Y = R1×N and PY = 1N immediately

yields ξ̂k = xk and δ̂k = lks
−1
k .11

Under the null hypothesis H′0, ξ := ξ1 = · · · = ξK , and δ := δ1 = · · · = δK . Let

x = (x1, . . . , xK) ∈ RI×NK , ξ̃ = (ξ, . . . , ξ) ∈ RI×NK , and Φ̃ = Diag(Φ1, . . . ,ΦK).
For fixed observations, the likelihood function for H′0 is proportional to

exp

{
−1

2
tr(δ(x− ξ̃)Φ̃(x− ξ̃)t)

}
|δ|l exp{−tr(δs)}.

Lemma 4.1 will now be applied to find the MLE’s for H′0. In this case, ξ̃ can be any
element of the subspace Y I ⊆ RI×NK , where Y = {(β, . . . , β) β ∈ R1×N}. Because
Y is a regression subspace with design matrix D = (1N , . . . , 1N ) ∈ RN×NK , the
projection matrix is

PY = Φ̃Dt(DΦ̃Dt)−1D.

111N is the N ×N identity matrix.
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Therefore,

ξ̂ = xΦ̃Dt(DΦ̃Dt)−1 =

K∑
k=1

xkΦkΦ−1,

and the expression for δ̂ is obtained easily thereafter. �

Continuing the proof of Theorem 4.2, a final application of Lemma 4.1 leads to
an expression for the likelihood ratio statistic.

Theorem 4.3. The likelihood ratio statistic for testing H′0 vs. H′ is

q′ =
llI
∏K
k=1 l

−lkI
k |sk|lk∣∣∣∣ 12 ∑K

k=1 xkΦkxtk −
1
2

(∑K
k=1 xkΦk

)
Φ−1

(∑K
k=1 xkΦk

)t
+ s

∣∣∣∣l
=

|δ̂|l∏K
k=1 |δ̂k|lk

. (14)

Now, an invariance argument based on the following lemma is used to show that

δ̂ and q′ are independent under H′0, which will allow the central moments of q′ to
be determined afterwards.

Lemma 4.4. Let G be a locally compact group, which acts properly on a locally
compact space X and properly and transitively on a locally compact space Y . Let
furthermore t : X → Y be a continuous equivariant12 map, and let π : X → X/G
denote the orbit projection. Then the map (t, π) is proper. If ν is an invariant
measure on X, and ν0 is an invariant measure on Y , then there exists a unique
measure κ on the locally compact space X/G such that (t, π)(ν) = ν0 ⊗ κ.

Proof. This is Lemma 3 of Andersson et al. (1983). �

Theorem 4.5. Under the null hypothesis H′0, ξ̂, δ̂, and q′ are independent, and

• ξ̂ ∼ N(ξ, (δ ⊗ Φ)−1)

• δ̂−1 ∼Wlδ,l−N
2

.

Proof. We will begin with a group invariance argument based on Lemma 4.4. Let
X = Θ = (RI×N × PD(I))K , and define Θ0 = RI×N × PD(I). Let G = RI×N ×
GL(I), and define a group operation on G by (η1, A1)(η2, A2) = (η1 +A1η2, A1A2).
The model H′ is invariant under the following actions of G on its observation space
and parameter space.

G×X → X

[(η,A), (xk, sk | k = 1, . . . ,K)] 7→ (η +Axk, AskA
t | k = 1, . . . ,K)

G×Θ→ Θ

[(η,A), (ξk, δk | k = 1, . . . ,K)] 7→ (η +Aξk, (A
−1)tδkA

−1 | k = 1, . . . ,K).

The submodel H′0 is invariant under the same action on its observation space and
the following action on its parameter space

G×Θ0 → Θ0

12Commuting with the action of G.
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[(η,A), (ξ, δ)] 7→ (η +Aξ, (A−1)tδA−1).

The testing problem H′0 vs. H′ is also invariant under these actions. More specifi-
cally, the embedding map

Θ0 → Θ

(ξ, δ) 7→ (ξ, δ | k = 1, . . . ,K)

is equivariant, and G acts transitively on Θ0. This follows from the fact that
(A, δ) 7→ (A−1)tδA−1 is a transitive action of GL(I) on PD(I). This action is also
proper, and one easily deduces that all of the above actions of G are proper. For
A ∈ GL(I), the Jacobian of the mapping

RI×N → RI×N
x 7→ η +Ax

is |A|N , and the Jacobian of the mapping

PD(I) → PD(I)
S 7→ ASAt

is |A|I+1. Therefore, the measure

dν(x1, s1, . . . , xK , sK) =

K∏
k=1

|sk|−
I+N+1

2 dxkdsk

is invariant under the action of G on X. The probability measures defined by H′

have continuous densities with respect to ν, and ν assigns finite positive mass to
any compact neighborhood. Therefore, invariance of the testing problem implies
equivariance of the maximum likelihood estimators and invariance of the likelihood
ratio statistic, q′.

Note that X, Θ0, and G are locally compact Hausdorff spaces, and let π : X →
X/G be the orbit projection. Applying Lemma 4.4 with Y = Θ0 and t = (ξ̂, δ̂),
there exists a measure κ on X/G such that

(t, π)(ν) = ν0 ⊗ κ,
where dν0(ξ, δ) = |δ|− I−N+1

2 dξdδ is an invariant measure on Θ0.

Now, we will find the distribution of (ξ̂, δ̂, π) under H′0 through a change of
variables. Using the notation from the proof of Theorem 4.2, for suitable constants
c1 and c2, we have

d

[
K⊗
k=1

N(ξ, (δ ⊗ Φk)−1)⊗Wδ,lk−N
2

]
(x1, s1, . . . , xK , sK)

=c1 exp

{
−tr

(
δ

(
1

2
(x− xPY )Φ̃(x− xPY )t + s

))
−1

2
tr(δ(xPY − ξ̃)Φ̃(xPY − ξ̃)t)

} K∏
k=1

|sk|lk−
I+N+1

2 dxkdsk

=c2 exp

{
−tr(lδδ̂−1)− 1

2
tr(δ(ξ̂ − ξ)Φ(ξ̂ − ξ)t)

}
q′|δ̂|−ldν.
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Because q′ is invariant, there exists a function q′π : X/G → (0, 1] such that
q′ = q′π ◦ π. Transforming the above measure by the mapping (t, π) yields the

central distribution of (ξ̂, δ̂, π), which is the following measure on Θ0 ×X/G.

dµ(ξ0, δ0, π0) =c2 exp

{
−tr(lδδ−1

0 )− 1

2
tr(δ(ξ0 − ξ)Φ(ξ0 − ξ)t)

}
· q′π(π0)|δ0|−ld(ν0 ⊗ κ)(ξ0, δ0, π0)

=c2 exp

{
−tr(lδδ−1

0 )− 1

2
tr(δ(ξ0 − ξ)Φ(ξ0 − ξ)t)

}
· q′π(π0)|δ0|−l−

I−N+1
2 dξ0dδ0dκ(π0),

proving that the maximum likelihood estimators are independent of the orbit pro-
jection under the null hypothesis. Since the likelihood ratio statistic is a function
of the orbit projection, it is also independent of the maximum likelihood estimators
under the null hypothesis.

Finally, we transform the above measure by the map (ξ0, δ0, π0) 7→ (ξ0, δ
−1
0 , π0),

whose Jacobian is |δ0|−(I+1), obtaining

c2|δ−1
0 |l−

N
2 −

I+1
2 exp{−tr(lδδ−1

0 )}

· exp

{
−1

2
tr(δ(ξ0 − ξ)Φ(ξ0 − ξ)t)

}
q′π(π0)dξ0dδ

−1
0 dκ(π0).

Therefore, (ξ̂, δ̂−1) ∼ N(ξ, (δ ⊗ Φ)−1)⊗Wlδ,l−N
2

under H′0. �

We are now prepared to find the central moments of q′. These moments and those
obtained in Section 5 will both be expressed in terms of the following constants.

Definition 4.6. Suppose I and N are nonnegative integers, and let l > I+N−1
2 .

Define the constant

c(α, l, I,N) = l−αlI
∏[

Γ(αl + l − N+i−1
2 )

Γ(l − N+i−1
2 )

i = 1, . . . , I

]
.

Theorem 4.7. For any α > 0, the αth moment of q′ under H′0 is

E[(q′)α] =

∏K
k=1 c(α, lk, I,N)

c(α, l, I,N)
,

where l = l1 + · · ·+ lK . In particular, the central moments of q′ do not depend on
the unknown parameter, so q′ is ancillary under H′0.

Proof. Assume that H′0 is true. The random variables δ̂k, k = 1, . . . ,K are inde-

pendent, and by Theorem 4.5, δ̂ and q′ are independent. Therefore, equation (14)
yields

E[|δ̂−1|αl]E[(q′)α] =

K∏
k=1

E[|δ̂−1
k |

αlk ].
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Since δ̂−1 ∼Wlδ,l−N
2

, and δ̂−1
k = l−1

k sk ∼Wlkδ,lk−N
2

, the theorem follows from the

moments of the generalized variance, given in equation (3).
�

5. Testing Equality of Natural Parameters for Generalized Riesz
Distributions

In this section, we find the moments of the likelihood ratio statistic for testing
that several generalized Riesz distributions have the same natural parameter. Let
V be a representation of the DUG U = (V, F ), and suppose λk ∈ RV/∼ satisfies (9),
for k = 1, . . . ,K. Based on independent observable random variables Sk ∼ R∆k,λk

,
k = 1, . . . ,K, we would like to test the hypothesis

H0 : ∆1 = · · · = ∆K

versus the hypothesis H that the ∆k’s are arbitrary elements of PD0(U).13 The
observation space for both H0 and H is P(U)K , the parameter space for H0 is
PD0(U), and the parameter space for H is PD0(U)K . In summary, the testing
problem is

H0 :

(
K⊗
k=1

R∆,λk
∈ P(P(U)K) | ∆ ∈ PD0(U)

)
vs.

H :

(
K⊗
k=1

R∆k,λk
∈ P(P(U)K) | ∆k ∈ PD0(U), k = 1, . . . ,K

)
.

We begin by finding the maximum likelihood estimator for ∆ under H0. Let
LH0

and LM be the likelihood functions for models H0 and M (see Corollary 3.11),
respectively, let S1, . . . , SK ∈ P(U), and define S = S1 + · · · + SK and λ = λ1 +
· · ·+ λK . In what follows, ∝ denotes equality up to a factor not depending on ∆.

LH0
(∆;S1, . . . , SK , λ1, . . . , λK) =

K∏
k=1

LM (∆;Sk, λk)

∝
K∏
k=1

JV(∆, λk)−1 exp{−tr(∆Sk)}

∝ JV(∆, λ)−1 exp{−tr(∆S)

∝ LM (∆;S, λ).

By Corollary 3.11, the value of ∆ maximizing LM (∆;S, λ) is S−λ, so the maxi-
mum likelihood estimator for ∆ under H0 is

∆̂ = S−λ.

Again, by Corollary 3.11, the maximum likelihood estimator for ∆k under H is

∆̂k = S−λk

k , for k = 1, . . . ,K.

13The shape parameters λk are assumed to be known in this testing problem.
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Therefore, the likelihood ratio statistic is

q(S1, . . . , SK) =

K∏
k=1

LM (∆̂;Sk, λk)

LM (∆̂k;Sk, λk)

=
∏(

|∆̂[B]◦|λB∏K
k=1 |∆̂k[B]◦|λkB

B ∈ V/ ∼

) ∏K
k=1 exp{tr(∆̂kSk)}

exp{tr(∆̂S)}
,

where ∆̂k[B]◦ = (∆̂k)[B]◦, and λkB = (λk)B . By Proposition 3.12, the exponentials
cancel, and the following theorem has been proved.

Theorem 5.1. The likelihood ratio statistic for testing H0 vs. H is

q : P(U)K → (0, 1]

q(S1, . . . , SK) =
∏(

|∆̂[B]◦|λB∏K
k=1 |∆̂k[B]◦|λkB

B ∈ V/ ∼

)

=
∏(

λ
λB [B]
B

|S[B]•|λB

K∏
k=1

|Sk[B]•|λkB

λ
λkB [B]
kB

B ∈ V/ ∼

)
,

where S = S1 + · · ·+ SK and λ = λ1 + · · ·+ λK .

The central moments of q are found by inducting on the number of boxes in V,
so we begin with the case where V has only one box and then proceed to the general
case.

Theorem 5.2. If V has only one box and α > 0, the αth moment of q under H0 is

E[qα] =

∏K
k=1 c(α, λkB , [B], 0)

c(α, λB , [B], 0)
,

where B = V is the single box in V.

Proof. Assume that H0 is true. Because V has only one box,

Sk[B]• = Sk ∼ R∆,λk
= W∆,λkB

, k = 1, . . . ,K,

S[B]• = S ∼ R∆,λ = W∆,λB
, and

|λ−1
B S|λBq =

K∏
k=1

|λ−1
kBSk|

λkB ,

cf. Remark 3.14. It now suffices to show that S and q are independent under H0,
which follows from an invariance argument like the one used to prove Theorem 4.5.

�

Theorem 5.3. Given α > 0, the αth moment of q under H0 is

E[qα] =
∏(∏K

k=1 c(α, λkB , [B], 〈B〉)
c(α, λB , [B], 〈B〉)

B ∈ V/ ∼

)
,

where λ = λ1 + · · ·+ λK .
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Proof. We proceed by induction on the number of boxes. If V has only one box B,
〈B〉 = ∅, and the result follows from Theorem 5.2.

On the other hand, assume that V has at least two boxes and that the theorem
has been proved for graphs with fewer boxes. Let M be a maximal box, define
VM := V \ [M ], and let UM be the subgraph of U induced by VM . By Corollary
3.4, there exist matrices ∆M ∈ PD0(UM ), ∆[M ] ∈ PD([M ]), and ΠM ∈ R[M ]×〈M〉

such that

∆ =

(
1VM

−Πt
M0

0 1[M ]

)(
∆M 0

0 ∆[M ]

)(
1VM

0
−ΠM0 1[M ]

)
.

For k = 1, . . . ,K, assume Sk ∼ R∆,λk
, so that H0 is true. By Theorem 5.1,

q =
∏

(qB | B ∈ V/ ∼), where

qB =
λ
λB [B]
B

|S[B]•|λB

K∏
k=1

|Sk[B]•|λkB

λ
λkB [B]
kB

.

Therefore,

q = qMq−M , where

q−M =
∏

(qB | B ∈ VM/ ∼),

and the notation suppresses the dependence on Sk, k = 1, . . . ,K. Below, we will
show that

E[qαM ‖ S1VM
, . . . , SKVM

] =

∏K
k=1 c(α, λkM , [M ], 〈M〉)
c(α, λM , [M ], 〈M〉)

.14 (15)

The other factor q−M depends only on S1VM
, . . . , SKVM

, and it is the likelihood
ratio statistic for testing H0 vs. H when the graph is UM . By Proposition 3.13,
SkVM

∼ R∆M ,(λk)−M
, so S1VM

, . . . , SKVM
satisfy H0 for the graph UM . Therefore,

by the induction hypothesis,

E[qα−M ] =
∏(∏K

k=1 c(α, λkB , [B], 〈B〉)
c(α, λB , [B], 〈B〉)

B ∈ VM/ ∼

)
.

Since q−M is a measurable function of the SkVM
’s, and E[qαM ‖ S1VM

, . . . , SKVM
] is

a constant,

E[qα] = E[qα−M ]E[qαM ‖ S1VM
, . . . , SKVM

]

=
∏(∏K

k=1 c(α, λkB , [B], 〈B〉)
c(α, λB , [B], 〈B〉)

B ∈ V/ ∼

)
.

To prove the theorem, it only remains to establish Equation (15), which follows
from the results for the testing problem H′0 vs. H′ discussed in Section 4. For
k = 1, . . . ,K, define xk := Sk[M〉• and sk := Sk[M ]•. By Proposition 3.13, the
conditional distribution of (x1, s1, . . . , xK , sK) given S1VM

, . . . , SKVM
is

14For random variables X and Y , E[X ‖ Y ] denotes the conditional expectation of X given Y .
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K⊗
k=1

N(ξ, (δ ⊗ Φk)−1)⊗Wδ,lk−N
2
,

where ξ = ΠM , δ = ∆[M ], Φk = 2Sk〈M〉, lk = λkM , and N = 〈M〉. In particu-
lar, the conditional distribution of (x1, s1, . . . , xK , sK) given S1VM

, . . . , SKVM
is a

probability measure in the model H′0. Furthermore, the following calculations show
that qM (S1, . . . , SK) = q′(x1, s1, . . . , xK , sK).

1

2

K∑
k=1

xkΦkx
t
k −

1

2

(
K∑
k=1

xkΦk

)
Φ−1

(
K∑
k=1

xkΦk

)t
+ s =

K∑
k=1

Sk[M〉•Sk〈M〉S
t
k[M〉• + Sk[M ]• −

(
K∑
k=1

Sk[M〉•Sk〈M〉

)
S−1
〈M〉

(
K∑
k=1

Sk[M〉•Sk〈M〉

)t
Noting that Sk[M ] = Sk[M ]• + Sk[M〉•Sk〈M〉S

t
k[M〉•, and Sk[M〉 = Sk[M〉•Sk〈M〉, the

above expression is equal to

S[M ] − S[M〉S
−1
〈M〉S

t
[M〉 = S[M ]•.

Because qM (S1, . . . , SK) = q′(x1, s1, . . . , xK , sK), and because the conditional dis-
tribution of (x1, s1, . . . , xK , sK) given S1VM

, . . . , SKVM
is a probability measure in

the model H′0, the conditional moments of qM given S1VM
, . . . , SKVM

are equal to
the moments of q′ from Theorem 4.7. This establishes Equation (15) and completes
the proof.

�
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