Probability and Statistics II
 Final Exam Review

Please show your work on all problems. Full use of your calculator is permitted.

1. Let X and Y be random variables with joint p.d.f.

$$
f(x, y)=c\left(x^{2}+y^{2}\right), \text { for } 0<x<4 \text { and } 0<y<2 .
$$

Determine the following.
(a) c
(b) $P\left(X<Y^{2}\right)$
2. Let X be a continuous random variable with p.d.f. $f(x)=3 x^{2}, 0<x<1$. Find the p.d.f. of $Y=5 X^{2}$.
3. Suppose that X_{1}, \ldots, X_{n} are independent random variables, and X_{i} has a binomial distribution with parameters n_{i} and p, for $i=1, \ldots, n$. Find the distribution of $X_{1}+\cdots+X_{n}$, and justify your answer.
4. Suppose U_{1}, U_{2}, \ldots are independent random variables, each having a uniform distribution on the interval $[0,1]$. If $Y=U_{1}+\cdots+U_{500}$, approximate $P(245<Y<260)$.
5. Let $\theta>0$, and consider the p.d.f. $f(x)=\theta x^{\theta-1}, 0<x<1$. Based on a random sample X_{1}, \ldots, X_{n} from this distribution, find the maximum likelihood estimator for θ.
6. In a random sample of 1000 machine components, 23 were defective. Find a 95% confidence interval for p, the proportion of machine components in the population that are defective.
7. Does the sample from the previous problem provide strong evidence that $p<0.04$? Perform a hypothesis test to support your conclusion.
8. The yield from a certain agricultural plant is normally distributed with mean μ. For a random sample of 15 of these plants, the sample mean was 54.23 grams, and the standard deviation was 12.78 grams. Find a 95% confidence interval for μ.
9. Does the sample from the previous problem provide strong evidence that $\mu \neq 50$? Perform a hypothesis test to support your conclusion.

