Math 505 Notes Chapter 1

Jesse Crawford

Department of Mathematics

Tarleton State University

Fall 2009

Outline

(1) Sections 1.5-1.7: Random Variables
(2) Section 1.8: Expected Value
(3) Section 1.9: Some Special Expectations
(4) Section 1.10: Important Inequalities

Definition

Let (S, \mathcal{B}, P) be a probability space. A random variable on S is a function

$$
X: S \rightarrow \mathbb{R}
$$

- such that $X^{-1}(B) \in \mathcal{B}$ for every $B \in \mathcal{B}_{0}$.
- (\mathcal{B}_{0} is the Borel σ-field on \mathbb{R}.)

Notation

Given $B \in \mathcal{B}_{0}$,

- $[X \in B]:=\{s \in S \mid X(s) \in B\}$
- $P[X \in B]=P(\{s \in S \mid X(s) \in B\})$
X induces a probability measure P_{X} on $\left(\mathbb{R}, \mathcal{B}_{0}\right)$ given by
- $P_{X}(B)=P[X \in B]$
- P_{X} is the distribution of X

Definition

- The space of X is the set of all possible values of X,
- $\mathcal{D}=\{X(s) \mid s \in S\}$

Example

- Roll two fair dice independently
- $S=\left\{\left(s_{1}, s_{2}\right) \mid s_{1}, s_{2} \in\{1, \ldots, 6\}\right\}$
- $X=$ sum of die rolls

$$
\begin{aligned}
& X: S \rightarrow \mathbb{R} \\
& X\left(s_{1}, s_{2}\right)=s_{1}+s_{2}
\end{aligned}
$$

- X is a random variable with space $\mathcal{D}=\{2,3, \ldots, 12\}$

Definition

The cumulative distribution function of X is

- $F: \mathbb{R} \rightarrow[0,1]$
- $F(x)=P[X \leq x]$

Defining properties of a c.d.f.

- If $a<b$, then $F(a) \leq F(b)$ (F is nondecreasing)
- $\lim _{x \rightarrow-\infty} F(x)=0$
- $\lim _{x \rightarrow \infty} F(x)=1$
- For any $x_{0} \in \mathbb{R}, \lim _{x \rightarrow x_{0}^{+}} F(x)=F\left(x_{0}\right)$ (F is right continuous)
- $F\left(x_{0}-\right):=\lim _{x \rightarrow x_{0}^{-}} F(x)$
- $P(X=x)=F(x)-F(x-)$
- $P(a<X \leq b)=F(b)-F(a)$
- $P(a<X<b)=F(b-)-F(a)$

Definition

- If the space of X is countable, X is called a discrete random variable,
- and it's probability mass function is

$$
\begin{aligned}
& p: \mathbb{R} \rightarrow[0,1] \\
& p(x)=P[X=x]
\end{aligned}
$$

Defining properties of a p.m.f.

- $p(x) \geq 0$, for every $x \in \mathbb{R}$
- $\sum_{x \in \mathbb{R}} p(x)=1$

Calculating probabilities with a p.m.f.
For a discrete random variable with p.m.f. p,

$$
P[X \in B]=\sum_{x \in B} p(x),
$$

for every $B \in \mathcal{B}_{0}$.

Definition

- If the c.d.f. of X is continuous, X is called a continuous random variable.
- Implies $P(X=x)=0$ for every $x \in \mathbb{R}$
- Space of X is typically an interval

Definition

Suppose $f: \mathbb{R} \rightarrow[0, \infty)$ such that

$$
P[X \in B]=\int_{B} f(x) d x
$$

for every $B \in \mathcal{B}_{0}$. Then f is called a probability density function for X.
Defining properties of a p.d.f.

- $f(x) \geq 0$, for every $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- If X has p.m.f. p, then $F(x)=\sum_{t \leq x} p(t)$
- If X has p.d.f. f, then $F(x)=\int_{-\infty}^{x} f(t) d t$
- Implies $F^{\prime}(x)=f(x)$ on intervals where f is continuous

Definition

If X and Y are two random variables with the same distribution, we write $X \stackrel{D}{=} Y$.

- $X \stackrel{D}{=} Y$ iff $F_{X}=F_{Y}$
- If X and Y are discrete, $X \stackrel{D}{=} Y$ iff $p_{X}=p_{Y}$
- If X and Y have densities, $X \stackrel{D}{=} Y$ iff $f_{X}=f_{Y}$ (almost everywhere)

Outline

(1) Sections 1.5-1.7: Random Variables

(2) Section 1.8: Expected Value
(3) Section 1.9: Some Special Expectations
(4) Section 1.10: Important Inequalities

Definition

- Let X be a random variable with p.m.f. p such that
- $\sum_{x \in \mathbb{R}}|x| p(x)<\infty$.
- Then the expected value of X is $E(X)=\sum_{x \in \mathbb{R}} x p(x)$.

Definition

- Let X be a random variable with p.d.f. f such that
- $\int_{-\infty}^{\infty}|x| f(x) d x<\infty$.
- Then the expected value of X is $E(X)=\int_{-\infty}^{\infty} x f(x) d x$.

Properties of expectation

Let $g: \mathbb{R} \rightarrow \mathbb{R}$.

- If X has p.m.f. $p, E[g(X)]=\sum_{x \in \mathbb{R}} g(x) p(x)$ (assuming the sum is absolutely convergent).
- If X has p.d.f. $f, E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x$ (assuming the function is integrable).
- If $X \equiv c$, for some $c \in \mathbb{R}$, then $E(X)=c$.
- If $a, b \in \mathbb{R}$, and X and Y are random variables, $E(a X+b Y)=a E(X)+b E(Y)$.

Outline

(1) Sections 1.5-1.7: Random Variables
(2) Section 1.8: Expected Value
(3) Section 1.9: Some Special Expectations

4 Section 1.10: Important Inequalities

Notation

The expected value of X is often called the mean, and denoted $\mu=E(X)$.

Definition

- The variance of a random variable X is $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$.
- The standard deviation of X is $\sigma=\sqrt{\operatorname{Var}(X)}$.
- $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$

Definition

Let X be a random variable such that, for some $h>0, E\left(e^{t X}\right)$ exists for every $-h<t<h$. Then the function

$$
M(t)=E\left(e^{t X}\right)
$$

is called the moment generating function of X.

Let X be a random variable with m.g.f. M.

- $M(0)=1$
- $M^{\prime}(0)=E(X)$
- $M^{\prime \prime}(0)=E\left(X^{2}\right)$
- $M^{(r)}(0)=E\left(X^{r}\right)$, for any $r=0,1,2, \ldots$
- $\operatorname{Var}(X)=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}$

Theorem
If X and Y are random variables, $X \stackrel{D}{=} Y$ iff $M_{X}=M_{Y}$.

Outline

(1) Sections 1.5-1.7: Random Variables
(2) Section 1.8: Expected Value
(3) Section 1.9: Some Special Expectations

4 Section 1.10: Important Inequalities

Theorem

Let X be a random variable and let m and k be integers such that $m \geq k \geq 0$. If $E\left(X^{m}\right)$ exists, then $E\left(X^{k}\right)$ exists.

Markov's Inequality

Let $u: \mathbb{R} \rightarrow[0, \infty)$. If $E[u(X)]$ exists, then for every $c>0$,

$$
P[u(X) \geq c] \leq \frac{E[u(X)]}{c} .
$$

Chebyshev's Inequality
Suppose X has finite variance σ^{2}. Then, for every $k>0$,

$$
P[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}} .
$$

Definition

A function ϕ defined on an interval (a, b) is said to be convex if, for every $x, y \in(a, b)$, and for every $0<\gamma<1$,

$$
\phi[\gamma x+(1-\gamma) y] \leq \gamma \phi(x)+(1-\gamma) \phi(y)
$$

- If ϕ is differentiable on $(a, b), \phi$ is convex iff ϕ is nondecreasing on (a, b).
- If ϕ is twice differentiable on $(a, b), \phi$ is convex iff $\phi^{\prime \prime} \geq 0$ on (a, b).

Jensen's Inequality

If ϕ is convex on an open interval I, and X is a random variable with finite expectation whose support is contained in I, then

$$
\phi[E(X)] \leq E[\phi(X)] .
$$

