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Definition
Let (S,B,P) be a probability space. A random vector on S is a
mapping

X : S → R2,

such that X−1(B) ∈ B, for every Borel set B ⊆ R2.

X induces a probability measure on R2 given by
PX (B) = P[X ∈ B] = P[X−1(B)], called the distribution of X , or
joint distribution of X1 and X2.
Joint c.d.f.: F (x1, x2) = P[X1 ≤ x1,X2 ≤ x2]

Discrete random variables have a joint p.m.f.
p(x1, x2) = P[X1 = x1,X2 = x2]

Continuous random variables may have a joint p.d.f.

P[(X1,X2) ∈ B] =

∫ ∫
B

f (x1, x2)dx1dx2.
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Given random variables X1 and X2 with joint p.m.f. p, the (marginal)
p.m.f.’s of X1 and X2 are

pX1(x1) =
∑

x2∈R p(x1, x2)

pX2(x2) =
∑

x1∈R p(x1, x2)

Given random variables X1 and X2 with joint p.d.f. f , the (marginal)
p.d.f.’s of X1 and X2 are

fX1(x1) =
∫∞
−∞ f (x1, x2)dx2

fX2(x2) =
∫∞
−∞ f (x1, x2)dx1
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If (X1,X2) is discrete,

E [g(X1,X2)] =
∑
x1∈R

∑
x2∈R

g(x1, x2)p(x1, x2),

assuming the sum converges absolutely.
If (X1,X2) has a density,

E [g(X1,X2)] =

∫ ∞
−∞

∫ ∞
−∞

g(x1, x2)f (x1, x2)dx1dx2,

assuming the integral exists.
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Mean of a Random Vector
The expected value of the random vector

X =

(
X1
X2

)
is

E(X ) =

(
E(X1)
E(X2)

)
.

Note that E(X ) is also a vector.
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Moment Generating Function of a Random Vector

If E(et1X1+t2X2) exists for |t1| < h1 and |t2| < h2, where h1 and h2 are
positive, it is denoted by MX1,X2(t1, t2) and is called the
moment-generating function of X .

t =

(
t1
t2

)

MX1,X2(t) = E [et ′X ]
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Definition
Let X be a random variable with p.m.f. p. The support of X , denoted
SX , is

SX = {x p(x) > 0}.

If X has p.d.f. f , then its support is

SX = {x f (x) > 0}.

Definition
Suppose X1 and X2 have joint p.m.f. pX1,X2 . Then, the conditional
p.m.f. of X2 given X1 is

pX2|X1
(x2|x1) = P(X2 = x2|X1 = x1) =

pX1,X2(x1, x2)

pX1(x1)
,

for x1 ∈ SX1 and x2 ∈ R.
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Conditional Expectation/Variance for a Discrete Random
Variable

The conditional expectation of X2 given X1 = x1 is

E(X2|X1 = x1) =
∑
x2∈R

x2pX2|X1
(x2|x1).

The conditional variance of X2 given X1 = x1 is

Var(X2|X1 = x1) = E(X 2
2 |X1 = x1)− E(X2|X1 = x1)

2,

and so on.
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Definition
Suppose X1 and X2 have joint p.d.f. fX1,X2 . Then, the conditional p.d.f.
of X2 given X1 is

fX2|X1
(x2|x1) =

fX1,X2(x1, x2)

fX1(x1)
,

for x1 ∈ SX1 and x2 ∈ R.

P(X2 ∈ B|X1 = x1) =

∫
B

fX2|X1
(x2|x1)dx2.

E(X2|X1) =

∫ ∞
−∞

x2fX2|X1
(x2|x1)dx2,

and so on.
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Definition
Let X and Y be random variables with means µX and µY . The
covariance of X and Y is

cov(X ,Y ) = E [(X − µX )(Y − µY )] = E(XY )− µXµY

The correlation coefficient of X and Y is

ρ =
cov(X ,Y )

σXσY
,

where σX and σY are the standard deviations of X and Y .
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Meaning of the Correlation Coefficient
−1 ≤ ρ ≤ 1
Correlation coefficient measures the strength of a linear
relationship between X and Y .

I ρ = 1 indicates a perfect linear relationship with positive slope, i.e.
Y = a + bX , for some a ∈ R and b > 0.

I ρ = −1 indicates a perfect linear relationship with negative slope.
I Values of ρ near zero indicate a weak or nonexistent linear

relationship between X and Y

(Tarleton State University) Chapter 2 Fall 2009 14 / 32



(Tarleton State University) Chapter 2 Fall 2009 15 / 32



(Tarleton State University) Chapter 2 Fall 2009 16 / 32



(Tarleton State University) Chapter 2 Fall 2009 17 / 32



Theorem
Suppose the means and variances of X and Y exist. If E(Y |X ) is a
linear function of X , then

E(Y |X ) = µY + ρ
σY

σX
(X − µX ).
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Definition
The random variables X1 and X2 are independent if

P(X1 ∈ B1,X2 ∈ B2) = P(X1 ∈ B1)P(X2 ∈ B2),

for all Borel subsets B1 and B2 of R.

Equivalent conditions for independence
P(a < X1 < b, c < X2 < d) = P(a < X1 < b)P(c < X2 < d), for all
a,b, c,d ∈ R
f (x1, x2) = f1(x1)f2(x2), for all x1, x2 ∈ R (in the continuous case).
p(x1, x2) = p1(x1)p2(x2), for all x1, x2 ∈ R (in the discrete case).
F (x1, x2) = F1(x1)F2(x2)

M(t1, t2) = M(t1,0)M(0, t2)
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Consequences of Independence
Suppose X1 and X2 are independent. Then

E(X1X2) = E(X1)E(X2)

u(X1) and v(X2) are independent for any functions u and v (that
are measurable)
X1 and X2 are uncorrelated (cov(X1,X2) = 0)
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Discrete Case
Suppose X is a discrete random variable with p.m.f. pX , and let
Y = g(X ).

If g is one-to-one, pY (y) = pX (g−1(y)).
In general,

pY (y) =
∑

x∈g−1({y})

pX (x).
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Continuous Case
Suppose X is a continuous random variable with p.d.f. fX , and let
Y = g(X ).

Distribution function technique:
I FY (y) = P(g(X ) ≤ y)
I fY (y) = F ′

Y (y) (under suitable conditions)

Theorem
Let X be a continuous random variable with p.d.f. fX and support SX .
Let Y = g(X ), where g : SX → R is a one-to-one differentiable
function. The p.d.f. of Y is

fY (y) = fX (g−1(y))|(g−1)′(y)|, for y ∈ SY .
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Discrete Case
Suppose (X1,X2) is a discrete random variable with p.m.f. pX1,X2 .
Let y1 = u1(x1, x2) and y2 = u2(x1, x2) define a one-to-one
mapping from the support of (X1,X2) to some set T ⊆ R2.
Let x1 = w1(y1, y2) and x2 = w2(y1, y2) denote the inverse
mapping.
Then the joint p.m.f. of Y1 = u1(X1,X2) and Y2 = u2(X1,X2) is

pY1,Y2(y1, y2) = pX1,X2 [w1(y1, y2),w2(y1, y2)], for (y1, y2) ∈ T .

(Tarleton State University) Chapter 2 Fall 2009 26 / 32



Continuous Case

Distribution Method
Z = u(X ,Y )

FZ (z) = P[u(X ,Y ) ≤ z]

fZ = F ′Z

Change of Variables Method
Suppose (X1,X2) is a continuous random vector with p.d.f. fX1,X2 .
Let y1 = u1(x1, x2) and y2 = u2(x1, x2) define a one-to-one
mapping from the support of (X1,X2) to some set T ⊆ R2.
Let x1 = w1(y1, y2) and x2 = w2(y1, y2) denote the inverse map.
Then the joint p.m.f. of Y1 = u1(X1,X2) and Y2 = u2(X1,X2) is

fY1,Y2(y1, y2) = fX1,X2 [w1(y1, y2),w2(y1, y2)]

∣∣∣∣∣ ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣
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Random vector X = (X1, . . . ,Xn)
′.

Joint p.d.f. f (x1, . . . , xn)

P[X ∈ A] =

∫ ∫
· · ·
∫

A
f (x1, . . . , xn)dx1 · · · dxn

E [u(X1, . . . ,Xn)] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

u(x1, . . . , xn)f (x1, . . . , xn)dx1 · · · dxn

M(t1, . . . , tn) = E [et1X1+···+tnXn ] = E [et ′X ]

fXi (xi) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f (x1, . . . , xn)dx1 · · · dxi−1dxi+1 · · · dxn
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f2,...,n|1(x2, . . . , xn|x1) =
f (x1, . . . , xn)

fX1(x1)

X1, . . . ,Xn are mutually independent if

f (x1, . . . , xn) = f (x1) · · · f (xn).

Definition
Let X = (X1, . . . ,Xn)

′ be a random vector. The expected value of X is

E(X ) = (E(X1), . . . ,E(Xn))
′
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If X and Y are n-dimensional random vectors, and A and B are
m × n matrices, then

E(AX + BY ) = AE(X ) + BE(Y )

If W is a random matrix and A and B are matrices, then

E(AWB) = AE(W )B,

assuming these operations are defined.
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Definition
Let X = (X1, . . . ,Xn)

′ be a random vector with expected value
µ = E(X ). The covariance matrix of X is

cov(X ) = E [(X − µ)(X − µ)′]

The (i , j)th entry of cov(X ) is σij = cov(Xi ,Xj).

cov(X ) = E [XX ′]− µµ′

If A is an m × n matrix,

cov(AX ) = Acov(X )A′
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