Math 505 Notes Chapter 2

Jesse Crawford

Department of Mathematics

Tarleton State University

Fall 2009

Outline

(1) Section 2.1: Distributions of Two Random Variables
(2) Section 2.3: Conditional Distributions and Expectations
(3) Section 2.4: The Correlation Coefficient
(4) Section 2.5: Independent Random Variables
(5) Sections 1.6.1 and 1.7.1: Transformations in the Univariate Case
(6) Section 2.2: Transformations of Bivariate Random Variables
(7) Section 2.6: Extension to Several Random Variables

Definition

Let (S, \mathcal{B}, P) be a probability space. A random vector on S is a mapping

$$
x: S \rightarrow \mathbb{R}^{2}
$$

such that $X^{-1}(B) \in \mathcal{B}$, for every Borel set $B \subseteq \mathbb{R}^{2}$.

- X induces a probability measure on \mathbb{R}^{2} given by $P_{X}(B)=P[X \in B]=P\left[X^{-1}(B)\right]$, called the distribution of X, or joint distribution of X_{1} and X_{2}.
- Joint c.d.f.: $F\left(x_{1}, x_{2}\right)=P\left[X_{1} \leq x_{1}, X_{2} \leq x_{2}\right]$
- Discrete random variables have a joint p.m.f. $p\left(x_{1}, x_{2}\right)=P\left[X_{1}=x_{1}, X_{2}=x_{2}\right]$
- Continuous random variables may have a joint p.d.f.

$$
P\left[\left(X_{1}, X_{2}\right) \in B\right]=\iint_{B} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

Given random variables X_{1} and X_{2} with joint p.m.f. p, the (marginal) p.m.f's of X_{1} and X_{2} are

- $p_{X_{1}}\left(x_{1}\right)=\sum_{x_{2} \in \mathbb{R}} p\left(x_{1}, x_{2}\right)$
- $p_{X_{2}}\left(x_{2}\right)=\sum_{x_{1} \in \mathbb{R}} p\left(x_{1}, x_{2}\right)$

Given random variables X_{1} and X_{2} with joint p.d.f. f, the (marginal) p.d.f.'s of X_{1} and X_{2} are

- $f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}$
- $f_{x_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1}$
- If $\left(X_{1}, X_{2}\right)$ is discrete,

$$
E\left[g\left(X_{1}, X_{2}\right)\right]=\sum_{x_{1} \in \mathbb{R}} \sum_{x_{2} \in \mathbb{R}} g\left(x_{1}, x_{2}\right) p\left(x_{1}, x_{2}\right)
$$

assuming the sum converges absolutely.

- If $\left(X_{1}, X_{2}\right)$ has a density,

$$
E\left[g\left(X_{1}, X_{2}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

assuming the integral exists.

Mean of a Random Vector

The expected value of the random vector

$$
x=\binom{x_{1}}{x_{2}}
$$

- is

$$
E(X)=\binom{E\left(X_{1}\right)}{E\left(X_{2}\right)} .
$$

- Note that $E(X)$ is also a vector.

Moment Generating Function of a Random Vector

If $E\left(e^{t_{1} X_{1}+t_{2} X_{2}}\right)$ exists for $\left|t_{1}\right|<h_{1}$ and $\left|t_{2}\right|<h_{2}$, where h_{1} and h_{2} are positive, it is denoted by $M_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)$ and is called the moment-generating function of X.

$$
t=\binom{t_{1}}{t_{2}}
$$

$$
M_{X_{1}, X_{2}}(t)=E\left[e^{t^{\prime} X}\right]
$$

Outline

(1) Section 2.1: Distributions of Two Random Variables
(2) Section 2.3: Conditional Distributions and Expectations
(3) Section 2.4: The Correlation Coefficient
4. Section 2.5: Independent Random Variables
(5) Sections 1.6.1 and 1.7.1: Transformations in the Univariate Case
(6) Section 2.2: Transformations of Bivariate Random Variables
(7) Section 2.6: Extension to Several Random Variables

Definition

Let X be a random variable with p.m.f. p. The support of X, denoted S_{X}, is

$$
S_{X}=\{x \mid p(x)>0\} .
$$

If X has p.d.f. f, then its support is

$$
S_{X}=\{x \mid f(x)>0\} .
$$

Definition

Suppose X_{1} and X_{2} have joint p.m.f. $p_{X_{1}, X_{2}}$. Then, the conditional p.m.f. of X_{2} given X_{1} is

$$
p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right)=\frac{p_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)}
$$

for $x_{1} \in S_{X_{1}}$ and $x_{2} \in \mathbb{R}$.

Conditional Expectation/Variance for a Discrete Random

 Variable- The conditional expectation of X_{2} given $X_{1}=x_{1}$ is

$$
E\left(X_{2} \mid X_{1}=x_{1}\right)=\sum_{x_{2} \in \mathbb{R}} x_{2} p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)
$$

- The conditional variance of X_{2} given $X_{1}=x_{1}$ is

$$
\operatorname{Var}\left(X_{2} \mid X_{1}=x_{1}\right)=E\left(X_{2}^{2} \mid X_{1}=X_{1}\right)-E\left(X_{2} \mid X_{1}=X_{1}\right)^{2},
$$

and so on.

Definition

Suppose X_{1} and X_{2} have joint p.d.f. $f_{X_{1}, X_{2}}$. Then, the conditional p.d.f. of X_{2} given X_{1} is

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)},
$$

for $x_{1} \in S_{X_{1}}$ and $x_{2} \in \mathbb{R}$.

$$
\begin{gathered}
P\left(X_{2} \in B \mid X_{1}=x_{1}\right)=\int_{B} f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) d x_{2} . \\
E\left(X_{2} \mid X_{1}\right)=\int_{-\infty}^{\infty} x_{2} f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) d x_{2},
\end{gathered}
$$

and so on.

Outline

(1) Section 2.1: Distributions of Two Random Variables
(2) Section 2.3: Conditional Distributions and Expectations
(3) Section 2.4: The Correlation Coefficient
(4) Section 2.5: Independent Random Variables
(5) Sections 1.6.1 and 1.7.1: Transformations in the Univariate Case
(6) Section 2.2: Transformations of Bivariate Random Variables
(7) Section 2.6: Extension to Several Random Variables

Definition

- Let X and Y be random variables with means μ_{X} and μ_{Y}. The covariance of X and Y is

$$
\operatorname{cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E(X Y)-\mu_{X} \mu_{Y}
$$

- The correlation coefficient of X and Y is

$$
\rho=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

where σ_{X} and σ_{Y} are the standard deviations of X and Y.

Meaning of the Correlation Coefficient

- $-1 \leq \rho \leq 1$
- Correlation coefficient measures the strength of a linear relationship between X and Y.
$\rho=1$ indicates a perfect linear relationship with positive slope, i.e.
$Y=a+b X$, for some $a \in \mathbb{R}$ and $b>0$.
$\rho=-1$ indicates a perfect linear relationship with negative slope.
Values of ρ near zero indicate a weak or nonexistent linear relationship between X and Y

Theorem

Suppose the means and variances of X and Y exist. If $E(Y \mid X)$ is a linear function of X, then

$$
E(Y \mid X)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right) .
$$

Outline

(1) Section 2.1: Distributions of Two Random Variables
(2) Section 2.3: Conditional Distributions and Expectations
(3) Section 2.4: The Correlation Coefficient

4 Section 2.5: Independent Random Variables
(5) Sections 1.6.1 and 1.7.1: Transformations in the Univariate Case
(6) Section 2.2: Transformations of Bivariate Random Variables
(7) Section 2.6: Extension to Several Random Variables

Definition

The random variables X_{1} and X_{2} are independent if

$$
P\left(X_{1} \in B_{1}, X_{2} \in B_{2}\right)=P\left(X_{1} \in B_{1}\right) P\left(X_{2} \in B_{2}\right)
$$

for all Borel subsets B_{1} and B_{2} of \mathbb{R}.
Equivalent conditions for independence

- $P\left(a<X_{1}<b, c<X_{2}<d\right)=P\left(a<X_{1}<b\right) P\left(c<X_{2}<d\right)$, for all $a, b, c, d \in \mathbb{R}$
- $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$, for all $x_{1}, x_{2} \in \mathbb{R}$ (in the continuous case).
- $p\left(x_{1}, x_{2}\right)=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)$, for all $x_{1}, x_{2} \in \mathbb{R}$ (in the discrete case).
- $F\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right)$
- $M\left(t_{1}, t_{2}\right)=M\left(t_{1}, 0\right) M\left(0, t_{2}\right)$

Consequences of Independence
Suppose X_{1} and X_{2} are independent. Then

- $E\left(X_{1} X_{2}\right)=E\left(X_{1}\right) E\left(X_{2}\right)$
- $u\left(X_{1}\right)$ and $v\left(X_{2}\right)$ are independent for any functions u and v (that are measurable)
- X_{1} and X_{2} are uncorrelated $\left(\operatorname{cov}\left(X_{1}, X_{2}\right)=0\right)$

Outline

(1) Section 2.1: Distributions of Two Random Variables
(2) Section 2.3: Conditional Distributions and Expectations
(3) Section 2.4: The Correlation Coefficient
(4) Section 2.5: Independent Random Variables
(5) Sections 1.6.1 and 1.7.1: Transformations in the Univariate Case
(6) Section 2.2: Transformations of Bivariate Random Variables
(7) Section 2.6: Extension to Several Random Variables

Discrete Case

Suppose X is a discrete random variable with p.m.f. p_{X}, and let $Y=g(X)$.

- If g is one-to-one, $p_{Y}(y)=p_{X}\left(g^{-1}(y)\right)$.
- In general,

$$
p_{Y}(y)=\sum_{x \in g^{-1}(\{y\})} p_{X}(x) .
$$

Continuous Case

Suppose X is a continuous random variable with p.d.f. f_{X}, and let $Y=g(X)$.

- Distribution function technique:

$$
\begin{aligned}
& F_{Y}(y)=P(g(X) \leq y) \\
& f_{Y}(y)=F_{Y}^{\prime}(y) \text { (under suitable conditions) }
\end{aligned}
$$

Theorem

Let X be a continuous random variable with p.d.f. f_{X} and support S_{X}. Let $Y=g(X)$, where $g: S_{X} \rightarrow \mathbb{R}$ is a one-to-one differentiable function. The p.d.f. of Y is

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\left(g^{-1}\right)^{\prime}(y)\right|, \text { for } y \in S_{Y} .
$$

Outline

(1) Section 2.1: Distributions of Two Random Variables
(2) Section 2.3: Conditional Distributions and Expectations
(3) Section 2.4: The Correlation Coefficient
(4) Section 2.5: Independent Random Variables
(5) Sections 1.6.1 and 1.7.1: Transformations in the Univariate Case
6) Section 2.2: Transformations of Bivariate Random Variables
(7) Section 2.6: Extension to Several Random Variables

Discrete Case

- Suppose $\left(X_{1}, X_{2}\right)$ is a discrete random variable with p.m.f. $p_{X_{1}, X_{2}}$.
- Let $y_{1}=u_{1}\left(x_{1}, x_{2}\right)$ and $y_{2}=u_{2}\left(x_{1}, x_{2}\right)$ define a one-to-one mapping from the support of $\left(X_{1}, X_{2}\right)$ to some set $T \subseteq \mathbb{R}^{2}$.
- Let $x_{1}=w_{1}\left(y_{1}, y_{2}\right)$ and $x_{2}=w_{2}\left(y_{1}, y_{2}\right)$ denote the inverse mapping.
- Then the joint p.m.f. of $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$ is

$$
p_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=p_{X_{1}, X_{2}}\left[w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right], \text { for }\left(y_{1}, y_{2}\right) \in T
$$

Continuous Case

Distribution Method

- $Z=u(X, Y)$
- $F_{Z}(z)=P[u(X, Y) \leq z]$
- $f_{Z}=F_{Z}^{\prime}$

Change of Variables Method

- Suppose $\left(X_{1}, X_{2}\right)$ is a continuous random vector with p.d.f. $f_{X_{1}, X_{2}}$.
- Let $y_{1}=u_{1}\left(x_{1}, x_{2}\right)$ and $y_{2}=u_{2}\left(x_{1}, x_{2}\right)$ define a one-to-one mapping from the support of $\left(X_{1}, X_{2}\right)$ to some set $T \subseteq \mathbb{R}^{2}$.
- Let $x_{1}=w_{1}\left(y_{1}, y_{2}\right)$ and $x_{2}=w_{2}\left(y_{1}, y_{2}\right)$ denote the inverse map.
- Then the joint p.m.f. of $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$ is

$$
f_{y_{1}, y_{2}}\left(y_{1}, y_{2}\right)=f_{x_{1}, x_{2}}\left[w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right]\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\partial x_{2} & \frac{\partial x_{2}}{\partial y_{1}}
\end{array} \frac{\partial y_{2}}{\partial{ }_{2}}\right|
$$

Outline

(1) Section 2.1: Distributions of Two Random Variables
(2) Section 2.3: Conditional Distributions and Expectations
(3) Section 2.4: The Correlation Coefficient
(4) Section 2.5: Independent Random Variables
(5) Sections 1.6.1 and 1.7.1: Transformations in the Univariate Case
(5) Section 2.2: Transformations of Bivariate Random Variables
(7) Section 2.6: Extension to Several Random Variables

- Random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$.
- Joint p.d.f. $f\left(x_{1}, \ldots, x_{n}\right)$

$$
P[X \in A]=\iint \cdots \int_{A} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

$$
E\left[u\left(X_{1}, \ldots, X_{n}\right)\right]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} u\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

$$
\begin{gathered}
M\left(t_{1}, \ldots, t_{n}\right)=E\left[e^{t_{1} x_{1}+\cdots+t_{n} x_{n}}\right]=E\left[e^{t^{\prime} x}\right] \\
f_{X_{i}}\left(x_{i}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{i-1} d x_{i+1} \cdots d x_{n}
\end{gathered}
$$

$$
f_{2, \ldots, n \mid 1}\left(x_{2}, \ldots, x_{n} \mid x_{1}\right)=\frac{f\left(x_{1}, \ldots, x_{n}\right)}{f_{X_{1}}\left(x_{1}\right)}
$$

- X_{1}, \ldots, X_{n} are mutually independent if

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}\right) \cdots f\left(x_{n}\right)
$$

Definition

Let $X=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ be a random vector. The expected value of X is

$$
E(X)=\left(E\left(X_{1}\right), \ldots, E\left(X_{n}\right)\right)^{\prime}
$$

- If X and Y are n-dimensional random vectors, and A and B are $m \times n$ matrices, then

$$
E(A X+B Y)=A E(X)+B E(Y)
$$

- If W is a random matrix and A and B are matrices, then

$$
E(A W B)=A E(W) B,
$$

assuming these operations are defined.

Definition

- Let $X=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ be a random vector with expected value $\mu=E(X)$. The covariance matrix of X is

$$
\operatorname{cov}(X)=E\left[(X-\mu)(X-\mu)^{\prime}\right]
$$

- The (i, j)th entry of $\operatorname{cov}(X)$ is $\sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$.
-

$$
\operatorname{cov}(X)=E\left[X X^{\prime}\right]-\mu \mu^{\prime}
$$

- If A is an $m \times n$ matrix,

$$
\operatorname{cov}(A X)=A \operatorname{cov}(X) A^{\prime}
$$

