Math 505 Notes Chapter 3

Jesse Crawford

Department of Mathematics

Tarleton State University

Fall 2009

Outline

(1) 3.1: The Binomial and Related Distributions
(2) Section 3.2: The Poisson Distribution
(3) Section 3.3: The Exponential, Γ, χ^{2}, and β Distributions
(4) Section 3.4: The Normal Distribution
(5) The Multivariate Normal Distribution
6) Section 4.1: Expectations of Functions

Definition

Let $p \in[0,1]$. A Bernoulli random variable with parameter p is a random variable X such that

- $P(X=1)=p$, and
- $P(X=0)=1-p$.

Definition

- Let $n \in \mathbb{N}_{+}$and $p \in[0,1]$,
- and let X_{1}, \ldots, X_{n} be independent Bernoulli random variables with parameter p.
- The random variable

$$
X=\sum_{i=1}^{n} X_{i}
$$

is a binomial random variable with parameters n and p,

- denoted $X \sim b(n, p)$.

Characteristics of a Binomial Random Variable

- Let $X \sim b(n, p)$.
- The p.m.f. of X is

$$
P[X=x]=\binom{n}{x} p^{x}(1-p)^{n-x}, \text { for } x=0,1, \ldots, n
$$

- The m.g.f. is

$$
M(t)=\left(1-p+p e^{t}\right)^{n}, \text { for } t \in \mathbb{R}
$$

- $E(X)=n p$
- $\operatorname{Var}(X)=n p(1-p)$

Theorem

- Let X_{1}, \ldots, X_{m} be independent random variables such that
- $X_{i} \sim b\left(n_{i}, p\right)$, for $i=1, \ldots, m$.
- Then

$$
\sum_{i=1}^{m} X_{i} \sim b\left(\sum_{i=1}^{m} n_{i}, p\right)
$$

Theorem

Suppose X_{1}, \ldots, X_{m} are independent random variables with m.g.f.'s M_{1}, \ldots, M_{m}. Then the moment generating function of $\sum_{i=1}^{m} X_{i}$ is given by

$$
M(t)=\prod_{i=1}^{m} M_{i}(t) .
$$

Definition

- Consider a sequence of independent Bernoulli trials with P (Success) $=p$, and let $r \in \mathbb{N}_{+}$.
- Let Y be the number of failures that occur before the r th success.
- The p.m.f. for Y is

$$
P[Y=y]=\binom{y+r-1}{r-1} p^{r}(1-p)^{y}, \text { for } y=0,1, \ldots
$$

and Y is said to have a negative binomial distribution.

- A negative binomial distribution with $r=1$ is called a geometric distribution.

Definition

- Consider a set of N objects consisting of N_{1} red objects and $N-N_{1}$ blue objects.
- Select n of these objects at random, without replacement, and let X be the number of red objects in the sample.
- Then the p.m.f. of X is

$$
P[X=x]=\frac{\binom{N_{1}}{x}\binom{N-N_{1}}{n-x}}{\binom{N}{n}},
$$

and X is said to have a hypergeometric distribution.

Outline

(9) 3.1: The Binomial and Related Distributions
(2) Section 3.2: The Poisson Distribution
(3) Section 3.3: The Exponential, Γ, χ^{2}, and β Distributions
4) Section 3.4: The Normal Distribution
(5) The Multivariate Normal Distribution
(6) Section 4.1: Expectations of Functions

Poisson Process

- X has a Poisson distribution with parameter m if

$$
P[X=x]=\frac{m^{x} e^{-m}}{x!}, \text { for } x=0,1, \ldots
$$

- Stream of "phone calls"
- Let $g(x, w)$ be the probability of receiving x phone calls in a time interval of length w
- Assumptions:

$$
\begin{aligned}
& g(1, h) \approx \lambda h, \text { for small } h \\
& \sum_{i=1}^{\infty} x=2 g(x, h) \approx 0, \text { for small } h
\end{aligned}
$$

The number of phone calls in nonoverlapping intervals are independent.
-

$$
g(x, w)=\frac{(\lambda w)^{x} e^{-\lambda w}}{x!}
$$

- The number of phone calls received in an interval of length w is a Poisson random variable with parameter $m=\lambda w$.

If X has a Poisson distribution with parameter m,

- $M(t)=e^{m\left(e^{t}-1\right)}$
- $E(X)=m$
- $\operatorname{Var}(X)=m$
- For a Poisson process, the parameter λ represents the average number of "phone calls" in an interval of length 1.
- The average number of "phone calls" in an interval of length w is λw

Outline

(1) 3.1: The Binomial and Related Distributions
(2) Section 3.2: The Poisson Distribution
(3) Section 3.3: The Exponential, Γ, χ^{2}, and β Distributions
4. Section 3.4: The Normal Distribution
(5) The Multivariate Normal Distribution
(6) Section 4.1: Expectations of Functions

A random variable X has an exponential distribution with mean $\beta>0$ if its p.d.f. is

$$
f(x)=\frac{1}{\beta} e^{-\frac{x}{\beta}}, \text { for } x>0
$$

The waiting time between "phone calls" in a Poisson process with parameter λ is exponentially distributed with mean $\beta=\frac{1}{\lambda}$.

- Let $\alpha, \beta>0$.

$$
\Gamma(\alpha):=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y
$$

- $\Gamma(\alpha)=(\alpha-1)$!, for $\alpha \in \mathbb{N}_{+}$
- If the p.d.f. of X is

$$
\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-\frac{\chi}{\beta}} \text { for } x>0
$$

then X is said to have a gamma distribution with parameters α and beta, i.e., $X \sim \Gamma(\alpha, \beta)$.

- Let $\alpha \in \mathbb{N}_{+}$. The waiting time until the α th "phone call" in a Poisson process with parameter λ has the distribution $\Gamma\left(\alpha, \frac{1}{\lambda}\right)$.
- If $\alpha \in \mathbb{N}_{+}$, and $X_{1}, \ldots, X_{\alpha}$ are i.i.d. exponential random variables with parameter β, then

$$
X_{1}+\cdots+X_{\alpha} \sim \Gamma(\alpha, \beta)
$$

- $M(t)=(1-\beta t)^{-\alpha}$, for $t<\beta^{-1}$.
- $E(X)=\alpha \beta$
- $\operatorname{Var}(X)=\alpha \beta^{2}$

Definition

- Let $\alpha=\frac{r}{2}$, where $r \in \mathbb{N}_{+}$, and $\beta=2$.
- The corresponding gamma distribution is called a χ^{2} distribution with r degrees of freedom, denoted $\chi^{2}(r)$.

Theorem

Let X_{1}, \ldots, X_{n} be independent random variables.

- If $X_{i} \sim \Gamma\left(\alpha_{i}, \beta\right)$, for $i=1, \ldots, n$, then $\sum_{i=1}^{n} X_{i} \sim \Gamma\left(\sum_{i=1}^{n} \alpha_{i}, \beta\right)$.
- If $X_{i} \sim \chi^{2}\left(r_{i}\right)$, for $i=1, \ldots, n$, then $\sum_{i=1}^{n} X_{i} \sim \chi^{2}\left(\sum_{i=1}^{n} r_{i}\right)$.

Definition

Let $\alpha, \beta>0$, and suppose the p.d.f. of X is

$$
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, \text { for } 0<x<1 .
$$

Then X is said to have a beta distribution with parameters α and β.

Outline

(1) 3.1: The Binomial and Related Distributions
(2) Section 3.2: The Poisson Distribution
(3) Section 3.3: The Exponential, Γ, χ^{2}, and β Distributions
4) Section 3.4: The Normal Distribution
(5) The Multivariate Normal Distribution
(6) Section 4.1: Expectations of Functions

Definition

A random variable Z with pdf

$$
f(z)=\exp \left\{-\frac{z^{2}}{2}\right\}, z \in \mathbb{R}
$$

has a standard normal distribution.

- Its mean is 0 .
- Its variance is 1 .

Definition

A random variable X has a normal distribution with mean μ and variance σ^{2} if

$$
X=\sigma Z+\mu,
$$

where Z is a standard normal random variable, i.e., if

$$
Z=\frac{X-\mu}{\sigma}
$$

has a standard normal distribution.

- $X \sim N\left(\mu, \sigma^{2}\right)$
- Its density is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}, x \in \mathbb{R} .
$$

Theorem

If $X \sim N\left(\mu, \sigma^{2}\right)$, then

$$
V=\frac{(X-\mu)^{2}}{\sigma^{2}}
$$

has a $\chi^{2}(1)$ distribution.

Theorem

Let X_{1}, \ldots, X_{n} be independent random variables such that $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, for $i=1, \ldots, n$. Then, given constants a_{1}, \ldots, a_{n},

$$
Y=\sum_{i=1}^{n} a_{i} X_{i} \sim N\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)
$$

Corollary

Let X_{1}, \ldots, X_{n} be i.i.d. normally distributed random variables with mean μ and variance σ^{2}. Then

$$
\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \sigma^{2} / n\right) .
$$

Outline

(1) 3.1: The Binomial and Related Distributions
(2) Section 3.2: The Poisson Distribution
(3) Section 3.3: The Exponential, Γ, χ^{2}, and β Distributions
(4) Section 3.4: The Normal Distribution
(5) The Multivariate Normal Distribution
(6) Section 4.1: Expectations of Functions

Definition

Let Z_{1}, \ldots, Z_{n} be i.i.d. $\mathrm{N}(0,1)$ random variables. Then the random vector $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{\prime}$ has a multivariate normal distribution with

- mean vector $E(Z)=0$, and
- covariance matrix $\operatorname{cov}(Z)=I_{n}$.
- $Z \sim N_{n}\left(0, I_{n}\right)$

$$
\begin{gathered}
M_{Z}(t)=\exp \left\{\frac{1}{2} t^{\prime} t\right\} . \\
f_{Z}(z)=\frac{1}{(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2} z^{\prime} z\right\}, z \in \mathbb{R}^{n}
\end{gathered}
$$

Definition

The random vector X has a multivariate normal distribution if

$$
X=\Sigma^{\frac{1}{2}} Z+\mu,
$$

where $\mu \in \mathbb{R}^{n}, \Sigma$ is an $n \times n$ positive semi-definite matrix, and $Z \sim N_{n}\left(0, I_{n}\right)$.

- $E(X)=\mu$
- $\operatorname{cov}(X)=\Sigma$
- $X \sim N_{n}(\mu, \Sigma)$

$$
M_{X}(t)=\exp \left\{t^{\prime} \mu+\frac{1}{2} t^{\prime} \Sigma t\right\}
$$

- If Σ is positive definite,

$$
f_{X}(x)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right\}, x \in \mathbb{R}^{n}
$$

Theorem

Suppose $X \sim N_{n}(\mu, \Sigma), A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Then

$$
A X+b \sim N_{m}\left(A \mu+b, A \Sigma A^{\prime}\right) .
$$

Corollary

Suppose $X \sim N_{n}(\mu, \Sigma)$, and let X_{1} and X_{2} be be random vectors containing the first n_{1} and last $n_{2}=n-n_{1}$ components of X, respectively, i.e.,

$$
X=\binom{x_{1}}{X_{2}} .
$$

Partitioning μ and Σ accordingly, we have

$$
\mu=\binom{\mu_{1}}{\mu_{2}} \text {, and } \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right) \text {. }
$$

Then $X_{1} \sim N_{n_{1}}\left(\mu_{1}, \Sigma_{11}\right)$, and $X_{2} \sim N_{n_{2}}\left(\mu_{2}, \Sigma_{22}\right)$.

Abstract

Theorem Let $X=\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{\prime}$, as in the previous corollary. Then X_{1} and X_{2} are independent if and only if $\Sigma_{12}=0$. That is, two jointly normal random vectors (variables) are independent if and only if they are uncorrelated.

Theorem

Suppose $X=\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{\prime}$, as in the previous corollary. Then the conditional distribution of X_{1} given X_{2} is

$$
N_{m}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(X_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right) .
$$

Outline

(1) 3.1: The Binomial and Related Distributions
(2) Section 3.2: The Poisson Distribution
(3) Section 3.3: The Exponential, Γ, χ^{2}, and β Distributions
4) Section 3.4: The Normal Distribution
(5) The Multivariate Normal Distribution
6) Section 4.1: Expectations of Functions

Theorem

$$
E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i} E\left(X_{i}\right)
$$

