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Definition
Let Ω ⊆ Rp

For every θ ∈ Ω, suppose Pθ is a probability measure
{Pθ | θ ∈ Ω} is a statistical model

θ is called the parameter, and it is considered to be unknown
Ω is called the parameter space

Suppose X1, . . . ,Xn are i.i.d. random variables such that Xi ∼ Pθ
Then X1, . . . ,Xn is a random sample from the above model.

A function T = T (X1, . . . ,Xn) of the sample is called a statistic.
If T is intended to estimate the unknown parameter θ, T is called
an estimator of θ, often denoted θ̂.

If E(θ̂) = θ, for every θ ∈ Ω, then θ̂ is called unbiased.
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Theorem

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE(Xi)

cov

 n∑
i=1

aiXi ,

m∑
j=1

bjYj

 =
n∑

i=1

m∑
j=1

aibjcov(Xi ,Yj).

If the random variables are independent,

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2
i Var(Xi).

(Tarleton State University) Chapter 4 Fall 2009 5 / 23



Example
The statistical model

{N(µ, σ2) | µ ∈ R, σ2 > 0}

represents a normal distribution with unknown mean µ and variance
σ2.
Given a sample X1, . . . ,Xn, estimators for µ and σ2 are

µ̂ = X̄ =
1
n

n∑
i=1

Xi ,

σ̂2 = S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2.

These estimators are unbiased.
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Definition
Let {Xn} be a sequence of random variables
Let X be a random variable
All defined on the same sample space
Then Xn converges in probability to X if for every ε > 0

lim
n→∞

P(|Xn − X | ≥ ε) = 0,

or equivalently
lim

n→∞
P(|Xn − X | < ε) = 1.

Xn
P→ X
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Definition
Let {Pθ | θ ∈ Ω} be a statistical model.
Let θ̂ be an estimator for θ.
If θ̂ P→ θ, for every θ ∈ Ω, then θ̂ is called a consistent estimator.

Theorem (Weak Law of Large Numbers)
Let {Xn} be a sequence of i.i.d. random variables with mean µ and
σ2 <∞. Then

X̄n =
1
n

n∑
i=1

Xi
P→ µ.

In particular, X̄n is a consistent estimator of µ.
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Theorem

If Xn
P→ X and Yn

P→ Y, then Xn + Yn
P→ X + Y.

If Xn
P→ X and a ∈ R, then If aXn

P→ aX.

If Xn
P→ a, and g is continuous at a, then g(Xn)

P→ g(a).

If Xn
P→ X, and g is continuous, then g(Xn)

P→ g(X ).

If Xn
P→ X and Yn

P→ Y, then XnYn
P→ XY.
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Definition
Let Xn be a random variable with c.d.f. Fn, for n = 1,2, . . ..
Let X be a random variable with c.d.f. F .
If limn→∞ Fn(x) = F (x) at every x ∈ R where F is continuous,
then we say Xn converges in distribution (converges weakly) to X .

Denoted Xn
D→ X

Example
Suppose Xn, n = 1,2, . . ., and X are continuous random variables, and
Xn

D→ X . Then
P(a < Xn < b)→ P(a < X < b),

for all a,b ∈ R.

(Tarleton State University) Chapter 4 Fall 2009 12 / 23



Theorem

If Xn
P→ X, then Xn

D→ X.

If a is a constant, then Xn
P→ a if and only if Xn

D→ a.

Theorem

If Xn
D→ X, and Yn

D→ 0, then Xn + Yn
D→ X.

If Xn
D→ X, and g is a continuous function on the support of X ,

then g(Xn)
D→ g(X ).

If Xn
D→ X, An

D→ a, and Bn
D→ b, where a,b ∈ R, then

An + BnXn
D→ a + bX .
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Theorem
Suppose the m.g.f. of Xn, Mn(t), is defined for −h < t < h, for all
n ∈ N, and
the m.g.f. of X , M(t), is defined for −h < t < h.

If Mn(t)→ M(t) for all t ∈ (−h,h), then Xn
D→ X.

Theorem (The Central Limit Theorem)
Suppose {Xi} is an i.i.d. sequence of random variables with mean µ
and finite variance σ2 > 0. Then∑n

i=1 Xi − nµ√
nσ

=
X̄n − µ
σ/
√

n
D→ N(0,1).

X̄n ≈ N(µ, σ2/n)∑n
i=1 Xi ≈ N(nµ, σ2n)
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Theorem
If the moment-generating function of X , M(t), exists on the interval
−h < t < h, then

X has finite moments of all orders, i.e.,

E(|X |k ) <∞, for every k = 1,2, . . . .

M(t) has the power series representation

M(t) =
∞∑

k=0

E(X k )

k !
tk .

M(t) is C∞, and
M(k)(0) = E(X k ).
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Theorem (Taylor’s Theorem with Lagrange’s Remainder)
Let f be a k times differentiable function on the interval I.
Let a ∈ I.
Then, for any x ∈ I, there exists cx between a and x such that

f (x) =f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 + · · ·

+
f (k−1)(a)

(k − 1)!
(x − a)k−1 +

f (k)(cx )

k !
(x − a)k .
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Definition
Consider a statistical model with unknown parameter θ ∈ R.
Let X1, . . . ,Xn be a sample from the model.
Suppose (a,b) is a random interval based on this sample such
that

P(a < θ < b) = 1− α, where α ∈ [0,1].

Then (a,b) is a confidence interval for θ with confidence level or
confidence coefficient 1− α.
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Example

Consider a statistical model with finite positive variance σ2 and
mean µ.
Let X1, . . . ,Xn be a large sample (n ≥ 30).
Let X̄n and Sn be the sample mean and sample standard
deviation, respectively.
An approximate 1− α confidence interval for µ is(

X̄n − zα/2
Sn√

n
, X̄n + zα/2

Sn√
n

)
,

where zα/2 is the 1− α/2 quantile of a standard normal
distribution, i.e.,

P(Z ≤ zα/2) = 1− α/2.
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Example
Suppose the population is normally distributed, i.e., the model is

{N(µ, σ2) | µ ∈ R, σ2 > 0}.

Then,
X̄n − µ
Sn/
√

n

has a t-distribution with n − 1 degrees of freedom (see Section
3.6).
An exact 1− α confidence interval for µ is(

X̄n − tα/2,n−1
Sn√

n
, X̄n + tα/2,n−1

Sn√
n

)
,

where tα/2,n−1 is the 1− α/2 quantile of a t-distribution with n − 1
degrees of freedom.
This confidence interval is valid for any sample size n ≥ 2.

(Tarleton State University) Chapter 4 Fall 2009 20 / 23



Definition
Suppose Z and V are independent random variables such that
Z ∼ N(0,1) and V ∼ χ2(n − 1). Then the random variable

T =
Z√

V/(n − 1)

has a t-distribution with n − 1 degrees of freedom.

Theorem (Student’s Theorem)

Let X1, . . . ,Xn be a random sample from the distribution N(µ, σ2), and
let X̄ and S2 be the sample mean and variance.

X̄ ∼ N(µ, σ2/n) and (n − 1)S2/σ2 ∼ χ2(n − 1)

X̄ and S2 are independent

T =
X̄ − µ
S/
√

n

has a t-distribution with n − 1 degrees of freedom.
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Example
Consider two normally distributed populations with means µ1 and
µ2 and the same variance σ2.
Let X1, . . . ,Xn1 and Y1, . . . ,Yn2 be independent samples from
these populations, and let n = n1 + n2.
Define the pooled sample variance to be

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2
n − 2

.

Then a 1− α confidence interval for µ1 − µ2 is

X̄ − Ȳ ± tα/2,n−2Sp

√
1
n1

+
1
n2
.
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Example
Let Y ∼ b(n,p), where n ∈ N is known and p ∈ (0,1) is unknown.
This is the setting of estimating an unknown population proportion
p based on a sample of size n.
For large sample sizes, an approximate 1− α confidence interval
for p is

p̂ ± zα/2

√
p̂(1− p̂)

n
,

where p̂ = Y/n is the proportion of successes in the sample.
(The approximation is conventionally considered valid when
np̂ ≥ 5 and n(1− p̂) ≥ 5, although some authors replace 5 with a
more conservative value, such as 15.)
Confidence interval for the difference of two proportions based on
two independent samples:

p̂1 − p̂2 ± zα/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
.
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