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Definition
o LetQCRP
@ For every 0 € Q, suppose Py is a probability measure
@ {Py | 0 € Q} is a statistical model

@ ¢ is called the parameter, and it is considered to be unknown
@ Q is called the parameter space

@ Suppose Xi, ..., X, are i.i.d. random variables such that X; ~ Py
@ Then Xj,..., X, is a random sample from the above model.
@ Afunction T = T(Xj, ..., X,) of the sample is called a statistic.

@ If T is intended to estimate the unknown parameter 6, T is called
an estimator of 9, often denoted 6.

e If E(A) =0, for every 6 € Q, then § is called unbiased.
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e Section 4.1: Expectations of Functions
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Theorem
o

E (i a,-X,-) = z”: aE(X;)
— =

n m n m
cov (Z X,y bj Yj) => "> abjcov(X;, Y)).
i—1 =

i=1 j=1

@ If the random variables are independent,

n n
Var (Z a,-X,-) = aVar(X)).
i=1 i=1
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Example
The statistical model

{N(,0%) | p € R, 0 > 0}

represents a normal distribution with unknown mean . and variance

2
o-.
Given a sample Xj, ..., X,, estimators for . and o2 are
1 n
0 pr— X == — X
:u’ n Z Iy

1 O .
A2 Q2 : 2
g = E; = ,7__125;;()6 — )() 5

These estimators are unbiased.
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e Section 4.2: Convergence in Probability
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Definition
@ Let {X,} be a sequence of random variables
@ Let X be a random variable
@ All defined on the same sample space
@ Then X, converges in probability to X if for every e > 0

lim P(|X, — X| > ¢) =0,
n—oo

@ or equivalently
nlim P(|Xn— X| <e)=1.
— 00

oXn£>X
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Definition
o Let {Py | 0 € Q} be a statistical model.
@ Let 4 be an estimator for 6.

o 19 5 0, for every 0 € Q, then d is called a consistent estimator.

Theorem (Weak Law of Large Numbers)

Let {Xn} be a sequence of i.i.d. random variables with mean p and
02 < oo. Then

- 1 P
)(h ::‘E z{; )0 — .
=

In particular, X, is a consistent estimator of 78
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Theorem
o IfX, 5 XandV, 5 v, thenX,+ Y, 5 X+ V.
o If X, 5 X and ac R, then If ax, 5 aX.
o IfX, 5 a and g is continuous at a, then g(Xp) A g(a).
e If X, A x , and g is continuous, then g(Xp) LA a(X).
o IfX, 5 X and Y, 5 v, then X,Y, 5 Xv.
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e Section 4.3: Convergence in Distribution (Weak Convergence)
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Definition
@ Let X, be a random variable with c.d.f. F,,forn=1,2,....
@ Let X be a random variable with c.d.f. F.
@ Iflimy_,o Fn(x) = F(x) at every x € R where F is continuous,
then we say X, converges in distribution (converges weakly) to X.

@ Denoted X, 2> X

Example
Suppose X, n=1,2,..., and X are continuous random variables, and

X, 2 X. Then
Pla< X, < b)— Pla< X < b),

for all a, b € R.
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Theorem
e IfX, 5 X, then X, 2 Xx.
@ If ais a constant, then X, R aifand only if X, 2 a

Theorem

o IfX, 3 X, and Y, 2 0, then X, + Y, 2 X.
e If X, B x , and g is a continuous function on the support of X,
then g(X») 2> g(X).

o If X, 2 X, Ap A a, and B, 4 b, where a, b € R, then

A, + B X, 2 a+ bX.
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Theorem

@ Suppose the m.g.f. of X, My(t), is defined for —h < t < h, for all
neN, and

@ the m.g.f. of X, M(t), is defined for —h < t < h.
o If My(t) — M(t) for all t € (—h, h), then X, 2 X.

Theorem (The Central Limit Theorem)

Suppose { X;} is an i.i.d. sequence of random variables with mean p.
and finite variance o > 0. Then

Sy Xi—nu _ Xn— 1
Vno o/Vn

B N(0,1).

@ X, ~ N(u,o?/n)
° 2?21 )(I & N(n,U,,O'Zn)

v
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Theorem

If the moment-generating function of X, M(t), exists on the interval
—h < t < h, then

@ X has finite moments of all orders, i.e.,
E(1X|¥) < oo, forevery k = 1,2, ...

@ M(t) has the power series representation

© k
M(t)y=>" E(:I( ).
k=0 ’

@ M(t) is C*, and
M*)(0) = E(X¥).
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Theorem (Taylor’s Theorem with Lagrange’s Remainder)
@ Letf be a k times differentiable function on the interval I.
@ Letac |
@ Then, for any x € I, there exists cx between a and x such that

Fx) =K(a) + F(a)(x — a) + B (x— a)2 4 ...

2
fk—1 )(a) f(k)(cx)

PRy XA g - a)t
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e Sections 5.1 and 5.4: Confidence Intervals
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Definition
@ Consider a statistical model with unknown parameter 6 € R.
@ Let Xi,..., X, be a sample from the model.

@ Suppose (a, b) is a random interval based on this sample such
that
P(a< 0 < b)=1—a,where a € [0,1].

@ Then (a, b) is a confidence interval for § with confidence level or
confidence coefficient 1 — c.

(Tarleton State University) Chapter 4 Fall 2009 18/23



Example
@ Consider a statistical model with finite positive variance o2 and
mean pu.
@ Let Xj,..., X, be alarge sample (n > 30).

@ Let X, and S, be the sample mean and sample standard
deviation, respectively.

@ An approximate 1 — « confidence interval for u is

< Sn ¢ S
(Xn - zoz/27%7 Xn + Za/zn) )
@ where z, ), is the 1 — /2 quantile of a standard normal
distribution, i.e.,
P(Z<z,0)=1-0a/2.
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Example
@ Suppose the population is normally distributed, i.e., the model is

{N(n,0%) | p € R,0° > 0}.
@ Then, _
Xn— 1
Sn/vn

has a t-distribution with n — 1 degrees of freedom (see Section
3.6).

@ An exact 1 — a confidence interval for p is

- Sn < S
<Xn — la/2,n-1 \?77, Xn+ laj2,n1 ﬁ) ;

@ where t, /> ,_1 is the 1 — /2 quantile of a t-distribution with n — 1
degrees of freedom.

@ This confidence interval is valid for any sample size n > 2.
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Definition
Suppose Z and V are independent random variables such that
Z ~ N(0,1) and V ~ x2(n — 1). Then the random variable

Z
V1)

has a t-distribution with n — 1 degrees of freedom.

Theorem (Student’s Theorem)

Let Xy, ..., Xn be a random sample from the distribution Ny, o?), and
let X and S? be the sample mean and variance.

@ X ~ N(u,0%/n) and (n —1)S2/0% ~ x2(n—1)

@ X and S? are independent
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Example

@ Consider two normally distributed populations with means p4 and

12 and the same variance 2.

@ Let Xi,...,Xp, and Y3, ..., Yy, be independent samples from
these populations, and let n = ny + no.

@ Define the pooled sample variance to be

2 (0 —1)8% 4 (no —1)S5
P n—2 ’

@ Then a 1 — « confidence interval for 1 — po is

1 1

X =Y+t 2025 r + .
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Example
@ Let Y ~ b(n,p), where n € N is known and p € (0, 1) is unknown.
@ This is the setting of estimating an unknown population proportion
p based on a sample of size n.
@ For large sample sizes, an approximate 1 — « confidence interval
for pis
R p(1 — £
p 4+ Za/2 l)(nm’

@ where p = Y/n s the proportion of successes in the sample.

@ (The approximation is conventionally considered valid when
np > 5 and n(1 — p) > 5, although some authors replace 5 with a
more conservative value, such as 15.)

@ Confidence interval for the difference of two proportions based on
two independent samples:

p1(1 —py) N P2(1 — p2)
n no ’

P1— b2 £ 242
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