Math 505 Notes Chapter 5

Jesse Crawford

Department of Mathematics Tarleton State University

Fall 2009

2 Sections 5.5 and 5.6: Hypothesis Tests

- Consider a statistical model with unknown parameter $\theta \in \mathbb{R}$.
- Let X_1, \ldots, X_n be a sample from the model.
- Suppose (*a*, *b*) is a random interval based on this sample such that

 $P(a < \theta < b) = 1 - \alpha$, where $\alpha \in [0, 1]$.

 Then (a, b) is a confidence interval for θ with confidence level or confidence coefficient 1 - α.

- Consider a statistical model with finite positive variance σ^2 and mean μ .
- Let X_1, \ldots, X_n be a large sample $(n \ge 30)$.
- Let \bar{X}_n and S_n be the sample mean and sample standard deviation, respectively.
- An *approximate* 1α confidence interval for μ is

$$\left(\bar{X}_n-z_{\alpha/2}\frac{S_n}{\sqrt{n}},\bar{X}_n+z_{\alpha/2}\frac{S_n}{\sqrt{n}}\right),$$

where z_{α/2} is the 1 – α/2 quantile of a standard normal distribution, i.e.,

$$P(Z \leq z_{\alpha/2}) = 1 - \alpha/2.$$

• Suppose the population is normally distributed, i.e., the model is

$$\{N(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 > 0\}.$$

Then,

$$\frac{\bar{X}_n - \mu}{S_n / \sqrt{n}}$$

has a *t*-distribution with n - 1 degrees of freedom (see Section 3.6).

• An *exact* $1 - \alpha$ confidence interval for μ is

$$\left(\bar{X}_n-t_{\alpha/2,n-1}\frac{S_n}{\sqrt{n}},\bar{X}_n+t_{\alpha/2,n-1}\frac{S_n}{\sqrt{n}}\right),$$

- where t_{α/2,n-1} is the 1 − α/2 quantile of a *t*-distribution with n − 1 degrees of freedom.
- This confidence interval is valid for any sample size $n \ge 2$.

Suppose *Z* and *V* are independent random variables such that $Z \sim N(0, 1)$ and $V \sim \chi^2(n-1)$. Then the random variable

$$T = \frac{Z}{\sqrt{V/(n-1)}}$$

has a *t*-distribution with n - 1 degrees of freedom.

Theorem (Student's Theorem)

Let X_1, \ldots, X_n be a random sample from the distribution $N(\mu, \sigma^2)$, and let \overline{X} and S^2 be the sample mean and variance.

- $\bar{X} \sim N(\mu, \sigma^2/n)$ and $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$
- \bar{X} and S^2 are independent

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

has a t-distribution with n - 1 degrees of freedom.

(Tarleton State University)

Chapter 5

- Consider two normally distributed populations with means μ_1 and μ_2 and the same variance σ^2 .
- Let X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} be independent samples from these populations, and let $n = n_1 + n_2$.
- Define the pooled sample variance to be

$$S_{p}^{2} = rac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{n-2}$$

• Then a 1 – α confidence interval for $\mu_1 - \mu_2$ is

$$ar{X} - ar{Y} \pm t_{lpha/2, n-2} S_{
ho} \sqrt{rac{1}{n_1} + rac{1}{n_2}}$$

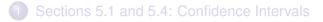
- Let $Y \sim b(n, p)$, where $n \in \mathbb{N}$ is known and $p \in (0, 1)$ is unknown.
- This is the setting of estimating an unknown population proportion *p* based on a sample of size *n*.
- For large sample sizes, an approximate 1α confidence interval for p is

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}},$$

• where $\hat{p} = Y/n$ is the proportion of successes in the sample.

- (The approximation is conventionally considered valid when $n\hat{p} \ge 5$ and $n(1 \hat{p}) \ge 5$, although some authors replace 5 with a more conservative value, such as 15.)
- Confidence interval for the difference of two proportions based on two independent samples:

$$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}.$$



- Consider a statistical model ($P_{\theta} \mid \theta \in \Omega$).
- Suppose that $\Omega = \omega_0 \cup \omega_1$, where $\omega_0 \cap \omega_1 = \emptyset$.
- We have two competing statistical hypotheses

 $H_0: \theta \in \omega_0$ vs. $H_1: \theta \in \omega_1$.

- Exactly one of these hypotheses is true, and determining which one is true on the basis of sample data is a *statistical testing problem*, or *hypothesis testing problem*.
- The hypothesis H₀ : θ ∈ ω₀ is called the *null hypothesis*, and the hypothesis H₁ : θ ∈ ω₁ is called the *alternative hypothesis*.
- A procedure that selects one of these hypotheses on the basis of sample data is a *hypothesis test*.
- Given a sample X₁,..., X_n from the model, a test is determined by a critical region C ⊂ ℝⁿ and the following procedure:

If
$$(X_1, \ldots, X_n) \in C$$
, we reject H₀.

• If $(X_1, \ldots, X_n) \notin C$, we do not reject H₀.

• Two types of errors:

- Type I error: Rejecting H₀ when it is true.
- Type II error: Not rejecting H₀ when it is false.
- The probability of making a type I error is at most

$$\alpha = \max_{\theta \in \omega_0} P_{\theta}[(X_1, \ldots, X_n) \in C].$$

- α is called the size or significance level of the test. Common value of α are 0.05 and 0.01.
- The probability of rejecting the null hypothesis when the parameter is θ is

$$\gamma(\theta) = P_{\theta}[(X_1, \ldots, X_n) \in C]$$

- The function $\gamma: \Omega \rightarrow [0, 1]$ is called the *power function*.
 - If $\theta \in \omega_0$, then $\gamma(\theta)$ is the probability of making a type I error.
 - If $\theta \in \omega_1$, then $\gamma(\theta)$ is the probability of *NOT* making a type II error.

- If $\theta \in \omega_0$, then $\gamma(\theta)$ is the probability of making a type I error.
- If $\theta \in \omega_1$, then $\gamma(\theta)$ is the probability of *NOT* making a type II error.
- We want $\gamma(\theta)$ to be small for $\theta \in \omega_0$.

Since

$$\max_{\theta \in \omega_0} \gamma(\theta) = \alpha,$$

where α is small, this condition is met.

• We also want $\gamma(\theta)$ to be large for $\theta \in \omega_1$.

Definition

- Consider two tests C₁ and C₂ with significance level α and power functions γ₁ and γ₂.
- If γ₁(θ) ≥ γ₂(θ), for every θ ∈ ω₁, then C₁ is uniformly more powerful than C₂, and is clearly a better test than C₂.
- If C_1 is uniformly more powerful than C_2 for *any* test C_2 with significance level α , then C_1 is a *uniformly most powerful test*, and is the "optimal" test at significance level α .

- Suppose X₁,..., X_n is a random sample from a N(μ, σ²) distribution, and let μ₀ ∈ ℝ.
- For testing

$$\mathsf{H}_{\mathsf{0}}: \mu = \mu_{\mathsf{0}} \text{ vs. } \mathsf{H}_{\mathsf{1}}: \mu \neq \mu_{\mathsf{0}},$$

 $\bullet\,$ the following test has significance level α

Reject
$$H_0$$
 if $|t| = \left| \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \right| \ge t_{\alpha/2, n-1}$.

- Consider a hypothesis test with test statistic *t*.
- Let t_0 be an observed value of t.
- The *p*-value, or *observed significance level*, corresponding to t_0 is the probability of observing a value of *t* "more extreme" than t_0 under the null hypothesis.
- The null hypothesis is rejected if the *p*-value is less than or equal to *α*.