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Definition
Consider a statistical model with p.d.f. f (x ; θ), for θ ∈ Ω.
Then the likelihood function for the model is

L : Ω× Rn → [0,1]
L(θ; x) =

∏n
i=1 f (xi ; θ).

θ is the unknown parameter
x = (x1, . . . , xn)′ can be thought of as the vector of observations
from a random sample X = (X1, . . . ,Xn)′.
Let θ̂ be an estimator of θ such that the maximum value

max{L(θ; X ) θ ∈ Ω}

is attained at θ̂ with probability one.
Then θ̂ is called a maximum likelihood estimator for θ.

(Tarleton State University) Chapter 6 Fall 2009 3 / 14



Definition
The likelihood equation for the model is

∂

∂θ
L(θ; x) = 0.

Let θ0 be the true value of the parameter.

Regularity Conditions

0 The pdfs are distinct, i.e., if θ 6= θ′, then f (xi ; θ) 6= f (xi ; θ
′).

1 The pdfs have common support for all θ ∈ Ω.
2 The parameter θ0 is an interior point of Ω.

Theorem
Under the regularity conditions (0) and (1),

lim
n→∞

Pθ0 [L(θ0,X ) > L(θ,X )] = 1, for all θ 6= θ0.
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Theorem
Assume that the regularity conditions (0) through (2) are satisfied,
and assume that f (x ; θ) is differentiable wrt. θ.
Suppose that the likelihood equation based on a sample of size n
has a unique solution θ̂n.
Then θ̂n is a consistent estimator of θ0.
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Consider a statistical model with pdf f (x ; θ), for θ ∈ Ω,
where Ω ⊆ R is an open interval.

Regularity Conditions

3 The pdf f (x ; θ) is twice differentiable as a function of θ.

4

∂k

∂θk

∫ ∞
−∞

f (x ; θ) dx =

∫ ∞
−∞

∂k

∂θk f (x ; θ) dx for k = 1,2

∂ log f (x ;θ)
∂θ is called the score function corresponding to the model.

Eθ(∂ log f (X ;θ)
∂θ ) = 0, for every θ ∈ Ω.

Define the Fisher information (at θ) for the model to be

I(θ) =

∫ ∞
−∞

(
∂ log f (x ; θ)

∂θ

)2

f (x ; θ)dx = −
∫ ∞
−∞

∂2 log f (x ; θ)

∂θ2 f (x ; θ)dx

Note that I(θ) = Varθ(∂ log f (X ;θ)
∂θ ).
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Theorem (Rao-Cramér Lower Bound)
Let X1, . . . ,Xn be a sample from the aforementioned model, and
assume the regularity conditions (0) through (4) are satisfied.
Let Y = u(X1, . . . ,Xn) be a statistic with mean Eθ(Y ) = k(θ).
Then

Var(Y ) ≥ [k ′(θ)]2

nI(θ)
.

In particular, if Y is an unbiased estimator of θ, then

Var(Y ) ≥ 1
nI(θ)

.

Definition
Let Y be an unbiased estimator whose variance attains the
Rao-Cramér lower bound. Then Y is called an efficient estimator.
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Regularity Conditions

5 The pdf f (x ; θ) is three times differentiable wrt. θ. For every
θ0 ∈ Ω, there exists a constant c and a function M(x) such that
Eθ0 [M(X )] <∞, and ∣∣∣∣ ∂3

∂θ3 log f (x ; θ)

∣∣∣∣ ≤ M(x),

for all θ0 − c < θ < θ0 + c and all x in the support of X .

Theorem
Assume regularity conditions (0) through (5) are satisfied and
let X1, . . . ,Xn be a sample from the pdf f (x ; θ0).
Also, assume the Fisher information satisfies 0 < I(θ0) <∞.
Then any consistent sequence of solutions to the mle equations
satisfies

√
n(θ̂n − θ0)

D→ N
(

0,
1

I(θ0)

)
.
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Definition
A sequence of random variables {Xn} is bounded in probability if
for every ε > 0, there exists a Bε > 0 and Nε ∈ N such that

if n ≥ Nε, then P[|Xn| ≤ Bε] ≥ 1− ε.

θ̂n ≈ N
(
θ0,

1
nI(θ0)

)
.

Under the regularity conditions, MLEs are asymptotically normal
and efficient.
An approximate 1− α confidence interval for θ is

θ̂n ± zα/2
1√

nI(θ̂n)
.
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Definition
Consider a statistical model given by the pdf f (x ; θ), for θ ∈ Ω ⊆ R.
Let θ0 ∈ Ω, and Consider the testing problem

H0 : θ = θ0 vs. H1 : θ 6= θ0.

Given a sample X1, . . . ,Xn, the likelihood function is

L(θ) =
n∏

i=1

f (Xi ; θ).

The likelihood ratio statistic is

Λ =
L(θ0)

L(θ̂)
.
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Λ =
L(θ0)

L(θ̂)
.

0 ≤ Λ ≤ 1.
Small values of Λ provide evidence against H0.
Likelihood ratio test:

Reject H0 if Λ ≤ c,

where c is chosen so that α = Pθ0 [Λ ≤ c].
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Theorem
Assume the regularity conditions (0) through (5) hold.
Under the null hypothesis,

χ2
L := −2 log Λ

D→ χ2(1).

We reject H0 if χ2
L ≥ χ2

α(1).

Alternatively, the statistic χ2
L can be replaced in the test above by

the
I Wald test statistic

χ2
W :=

[√
nI(θ̂)(θ̂ − θ0)

]2

,

I or Rao’s score test statistic

χ2
R :=

(
l ′(θ0)√
nI(θ0)

)2

.
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