Math 505 Notes Chapter 6

Jesse Crawford

Department of Mathematics Tarleton State University

Fall 2009

Section 6.1: Maximum Likelihood Estimation

2 Section 6.2: Rao-Cramér Lower Bound and Efficiency

3 Section 6.3: Maximum Likelihood Tests

- Consider a statistical model with p.d.f. $f(x; \theta)$, for $\theta \in \Omega$.
- Then the likelihood function for the model is

$$\begin{array}{rcl} L:\Omega\times\mathbb{R}^n &\to & [0,1]\\ L(\theta;x) &= & \prod_{i=1}^n f(x_i;\theta). \end{array}$$

- θ is the unknown parameter
- x = (x₁,...,x_n)' can be thought of as the vector of observations from a random sample X = (X₁,...,X_n)'.
- Let $\hat{\theta}$ be an estimator of θ such that the maximum value

 $\max\{L(\theta; X) \mid \theta \in \Omega\}$

is attained at $\hat{\theta}$ with probability one.

• Then $\hat{\theta}$ is called a *maximum likelihood estimator* for θ .

The likelihood equation for the model is

$$\frac{\partial}{\partial \theta} L(\theta; \mathbf{x}) = \mathbf{0}.$$

Let θ_0 be the true value of the parameter.

Regularity Conditions

- The pdfs are distinct, i.e., if $\theta \neq \theta'$, then $f(x_i; \theta) \neq f(x_i; \theta')$.
- The pdfs have common support for all $\theta \in \Omega$.
- **2** The parameter θ_0 is an interior point of Ω .

Theorem

Under the regularity conditions (0) and (1),

$$\lim_{\eta\to\infty} P_{\theta_0}[L(\theta_0,X)>L(\theta,X)]=1, \text{ for all } \theta\neq\theta_0.$$

Theorem

- Assume that the regularity conditions (0) through (2) are satisfied,
- and assume that $f(x; \theta)$ is differentiable wrt. θ .
- Suppose that the likelihood equation based on a sample of size n has a unique solution θ̂_n.
- Then $\hat{\theta}_n$ is a consistent estimator of θ_0 .

Section 6.1: Maximum Likelihood Estimation

3 Section 6.3: Maximum Likelihood Tests

• Consider a statistical model with pdf $f(x; \theta)$, for $\theta \in \Omega$,

• where $\Omega \subseteq \mathbb{R}$ is an open interval.

Regularity Conditions

4

So The pdf $f(x; \theta)$ is twice differentiable as a function of θ .

$$\frac{\partial^k}{\partial \theta^k} \int_{-\infty}^{\infty} f(x;\theta) \, dx = \int_{-\infty}^{\infty} \frac{\partial^k}{\partial \theta^k} f(x;\theta) \, dx$$
 for $k = 1, 2$

- $\frac{\partial \log f(x;\theta)}{\partial \theta}$ is called the *score function* corresponding to the model.
- $E_{\theta}(\frac{\partial \log f(X;\theta)}{\partial \theta}) = 0$, for every $\theta \in \Omega$.
- Define the Fisher information (at θ) for the model to be

$$I(\theta) = \int_{-\infty}^{\infty} \left(\frac{\partial \log f(x;\theta)}{\partial \theta}\right)^2 f(x;\theta) dx = -\int_{-\infty}^{\infty} \frac{\partial^2 \log f(x;\theta)}{\partial \theta^2} f(x;\theta) dx$$

• Note that
$$I(\theta) = \operatorname{Var}_{\theta}(\frac{\partial \log f(X;\theta)}{\partial \theta}).$$

Theorem (Rao-Cramér Lower Bound)

- Let X_1, \ldots, X_n be a sample from the aforementioned model, and
- assume the regularity conditions (0) through (4) are satisfied.
- Let $Y = u(X_1, ..., X_n)$ be a statistic with mean $E_{\theta}(Y) = k(\theta)$.
- Then

$$Var(Y) \geq \frac{[k'(\theta)]^2}{nl(\theta)}$$

In particular, if Y is an unbiased estimator of θ, then

$$Var(Y) \geq \frac{1}{nl(\theta)}.$$

Definition

Let *Y* be an unbiased estimator whose variance attains the Rao-Cramér lower bound. Then *Y* is called an *efficient* estimator.

Regularity Conditions

So The pdf $f(x; \theta)$ is three times differentiable wrt. θ . For every $\theta_0 \in \Omega$, there exists a constant *c* and a function M(x) such that $E_{\theta_0}[M(X)] < \infty$, and

$$\left|\frac{\partial^3}{\partial\theta^3}\log f(x;\theta)\right| \leq M(x),$$

for all $\theta_0 - c < \theta < \theta_0 + c$ and all *x* in the support of *X*.

Theorem

- Assume regularity conditions (0) through (5) are satisfied and
- let X_1, \ldots, X_n be a sample from the pdf $f(x; \theta_0)$.
- Also, assume the Fisher information satisfies $0 < I(\theta_0) < \infty$.
- Then any consistent sequence of solutions to the mle equations satisfies

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{D}{\rightarrow} N\left(0, \frac{1}{I(\theta_0)}\right)$$

- A sequence of random variables $\{X_n\}$ is bounded in probability if
- for every $\epsilon > 0$, there exists a $B_{\epsilon} > 0$ and $N_{\epsilon} \in \mathbb{N}$ such that

if $n \ge N_{\epsilon}$, then $P[|X_n| \le B_{\epsilon}] \ge 1 - \epsilon$.

$$\hat{\theta}_n \approx N\left(\theta_0, \frac{1}{nI(\theta_0)}\right).$$

- Under the regularity conditions, MLEs are asymptotically normal and efficient.
- An approximate 1α confidence interval for θ is

$$\hat{\theta}_n \pm z_{\alpha/2} \frac{1}{\sqrt{nl(\hat{\theta}_n)}}.$$

Section 6.1: Maximum Likelihood Estimation

2 Section 6.2: Rao-Cramér Lower Bound and Efficiency

3 Section 6.3: Maximum Likelihood Tests

- Consider a statistical model given by the pdf $f(x; \theta)$, for $\theta \in \Omega \subseteq \mathbb{R}$.
- Let $\theta_0 \in \Omega$, and Consider the testing problem

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$.

• Given a sample X_1, \ldots, X_n , the likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f(X_i; \theta).$$

The likelihood ratio statistic is

$$\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})}.$$

$$\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})}.$$

• $0 \le \Lambda \le 1$.

۲

- Small values of Λ provide evidence against H₀.
- Likelihood ratio test:

Reject H_0 if $\Lambda \leq c$,

• where *c* is chosen so that $\alpha = P_{\theta_0}[\Lambda \leq c]$.

Theorem

- Assume the regularity conditions (0) through (5) hold.
- Under the null hypothesis,

$$\chi_L^2 := -2\log\Lambda \xrightarrow{D} \chi^2(1).$$

• We reject H_0 if $\chi_L^2 \ge \chi_\alpha^2(1)$.

- Alternatively, the statistic χ^2_L can be replaced in the test above by the
 - Wald test statistic

$$\chi^2_{W} := \left[\sqrt{nl(\hat{\theta})}(\hat{\theta} - \theta_0)\right]^2,$$

or Rao's score test statistic

$$\chi_R^2 := \left(\frac{l'(\theta_0)}{\sqrt{nl(\theta_0)}}\right)^2.$$