Math 505 Homework 1

1. Suppose X has a binomial distribution with parameters $n=20$ and $p=0.8$.
(a) Find the p.m.f. for X.
(b) Find $P[X=10]$.
(c) Find $E[X], \operatorname{Var}[X]$, and σ_{X}.
2. If $\theta>0$, an exponential distribution with parameter θ is given by the p.d.f.

$$
f(x)=\left\{\begin{array}{ll}
\frac{1}{\theta} e^{-x / \theta}, & 0 \leq x<\infty \\
0, & \text { otherwise }
\end{array} .\right.
$$

(a) If X has an exponential distribution with parameter θ, show that $E[X]=\theta$, and $\operatorname{Var}[X]=$ θ^{2}.
(b) If X has an exponential distribution with parameter $\theta=5$, find $E[X], \operatorname{Var}[X]$, and $P[2<X<8]$.
3. Consider a population of women whose heights are normally distributed with mean 64 inches and standard deviation 2 inches. Find the probability that a randomly selected woman from this population has a height between 61 and 65 inches.
4. Let Z be a standard normal random variable.
(a) Find the approximate value of c, where $P[Z<c]=0.84$.
(b) Find the approximate value of $z_{0.07}$.
5. Let T have a t-distribution with 18 degrees of freedom.
(a) Find the approximate value of c, where $P[T<c]=0.75$.
(b) If $\alpha=0.05$, find the approximate value of $t_{\alpha / 2}(18)$.

