Math 505 Homework 2

1. The Poisson distribution with parameter $\lambda>0$ is given by the p.m.f.

$$
f(x ; \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!}, x=0,1,2, \ldots
$$

Find the maximum likelihood estimator $\hat{\lambda}$ based on a sample X_{1}, \ldots, X_{n} from a Poisson distribution.
2. A random sample of 2000 Math SAT scores yields $\bar{X}=502.37$ and $s=118.74$.
(a) Find a 95% confidence interval for the population mean μ.
(b) Perform the following hypothesis test at the 5\% significance level:

$$
\mathrm{H}_{0}: \mu=500 \text { vs. } \mathrm{H}: \mu \neq 500 .
$$

(c) Find the p-value of the test from part (b).
3. Suppose X_{1}, \ldots, X_{n} is a random sample from a $N\left(\mu, \sigma^{2}\right)$ population.
(a) Use the fact that

$$
T=\frac{\bar{X}-\mu}{s / \sqrt{n}} \sim t(n-1)
$$

to show that the random interval

$$
\left(\bar{X}-t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}, \bar{X}+t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}\right)
$$

contains μ with probability $1-\alpha$.
(b) Let $\mu_{0} \in \mathbb{R}$, and consider the testing problem

$$
\mathrm{H}_{0}: \mu=\mu_{0} \text { vs. } \mathrm{H}: \mu \neq \mu_{0} .
$$

If we reject H_{0} if and only if $|T| \geq t_{\alpha / 2}(n-1)$, show that the probability of making a Type I error is at most α.

