Math 5305 Midterm Exam Review

- 1. Chapters 1 and 2 of Freedman, Pisani, and Purves.
 - (a) Know definitions such as randomized controlled double blind experiment, observational study, confounding variable, etc.
 - (b) Be prepared to answer questions related to these ideas.
- 2. Prove the following.
 - (a) If $A, B \in \mathbb{R}^{I \times I}$, then $\operatorname{trace}(A + B) = \operatorname{trace}(A) + \operatorname{trace}(B)$.
 - (b) If $A \in \mathbb{R}^{I \times J}$, and $B \in \mathbb{R}^{J \times I}$, then $\operatorname{trace}(AB) = \operatorname{trace}(BA)$.
 - (c) If $A \in \mathbb{R}^{I \times J}$, U is a random matrix taking values in $R^{J \times K}$, and $B \in \mathbb{R}^{K \times L}$, then E(AUB) = AE(U)B.
 - (d) If $A \in \mathbb{R}^{N \times M}$, and U is a random vector of length M, then Cov(AU) = ACov(U)A'.
- 3. Let $X \in \mathbb{R}^{n \times p}$, where $p \leq n$. Show that X has full rank if and only if X'X has full rank.
- 4. Know the definitions of nonnegative/positive definite and orthogonal matrices, and be prepared to work related problems.
- 5. Write the equation for a multiple regression model.
 - (a) For each vector/matrix appearing in the model, state the following: its dimensions, whether it is observable or unobservable, and whether it is random or constant.
 - (b) State all of the mathematical assumptions that apply to this model.
 - (c) Define $\hat{\beta}$, \hat{Y} , e, and $\hat{\sigma}^2$.
 - (d) Prove that $E(\hat{\beta} \mid X) = \beta$.
 - (e) Prove that $E(\hat{\sigma}^2 \mid X) = \sigma^2$.
 - (f) Prove that $Cov(\hat{\beta} \mid X) = \sigma^2(X'X)^{-1}$.
 - (g) What is $\hat{SE}(\hat{\beta}_j)$?
- 6. Given a multiple regression model, define the coefficient of determination, R^2 . If the answer to one of the questions below is "no", provide a counterexample.
 - (a) If the model is valid, what does an R^2 value near 1 indicate?
 - (b) If the model is valid, what does an R^2 value near 0 indicate?
 - (c) Does an R^2 value near 1 prove that the model is valid?
 - (d) Does an \mathbb{R}^2 value near 1 prove a causal relationship exists between X and Y?
 - (e) Does an \mathbb{R}^2 value near 0 prove that the association between X and Y is weak?