Math 5305 Notes Chapters 2 and 4

Jesse Crawford

Department of Mathematics Tarleton State University

Ohapter 2: Simple Linear Regression

- 2 Section 4.1: Introduction to Multiple Regression
- 3 Section 4.2: Standard Errors
- 4 Section 4.3: Explained Variance in Multiple Regression
- 5 Section 4.4: What Happens if Assumptions Break Down?

< 🗇 🕨 < 🖻 > <

A Scatterplot

We have a sequence of pairs (x_i, y_i) , i = 1, ..., n.

(Tarleton State University)

э

Sample Statistics

٥

• We have a sequence of pairs (x_i, y_i) , i = 1, ..., n.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\operatorname{Var}(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
, and $s_x = \sqrt{\operatorname{Var}(x)}$.

- \bar{y} , Var(y), and s_y defined similarly.
- Sample correlation coefficient:

$$r = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \bar{x}}{s_x} \cdot \frac{y_i - \bar{y}}{s_y}$$

• $-1 \leq r \leq 1$

- $\bar{x} = 493$ and $\bar{y} = 482$
- $s_x = 73$ and $s_y = 79$
- *r* = 0.44

< 3

The Regression Line

• Regression Line

- Goes through the point of averages (\bar{x}, \bar{y})
- slope = $r \frac{s_y}{s_x}$

< 🗇 🕨

SD Line

- Goes through the point of averages (\bar{x}, \bar{y})
- slope = $sign(r)\frac{s_y}{s_x}$

-

Regression Line: y = 0.483x + 244
SD Line: y = 1.09x - 57.7

8/41

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Chapter 2: Simple Linear Regression

2 Section 4.1: Introduction to Multiple Regression

- 3 Section 4.2: Standard Errors
- 4 Section 4.3: Explained Variance in Multiple Regression
- 5 Section 4.4: What Happens if Assumptions Break Down?

4 A N

- **→ → →**

$$Y_i = \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \epsilon_i$$
, for $i = 1, \dots, n$.

Verbal_{*i*} =
$$\beta_1 + \beta_2$$
Math_{*i*} + ϵ_i , for *i* = 1,..., 3146.

Post-test_i = $\beta_1 + \beta_2$ Pre-test_i + β_3 MathSAT_i + β_4 VerbSAT_i + β_5 HSrank_i + β_6 Clickers_i + β_7 GroupWork_i + ϵ_i , for i = 1, ..., 140.

Many Possible Examples!

$$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$
, for $i = 1, \ldots, n$.

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$
$$Y = X\beta + \epsilon$$

- *Y* is an *n* × 1 **observable random vector**. Called dependent, response, or output variable.
- X is an n × p observable matrix. Can be viewed as random or constant. The columns are called independent, explanatory, predictor, control or input variables. Also called covariates.

Multiple Regression Model

$$Y_i = \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i$$
, for $i = 1, \ldots, n$.

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$
$$Y = X\beta + \epsilon$$

- X is also called the design matrix. If the first column of X is all 1's then the model has an intercept term.
- β is a constant, unobservable vector. It is one of the model parameters. The β_i's are called regression coefficients.
- ϵ is a **random, unobservable vector**. The ϵ_i 's are called error/disturbance terms.

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$
$$Y = X\beta + \epsilon$$

- p < n, and X has full rank.
- *ϵ*₁,..., *ϵ_n* are IID with mean 0 and variance *σ*² > 0. Note that *σ* is
 another model parameter, which is constant and unobservable.

$$E(\epsilon) = 0$$
 and $cov(\epsilon) = \sigma^2 I$.

• If X is random, ϵ is independent of X. Notation: $\epsilon \perp \!\!\!\perp X$.

Theorem

• The sum of square errors $\|\mathbf{Y} - \mathbf{X}\gamma\|^2$ is minimized when

$$\gamma = \hat{\beta} = (X'X)^{-1}X'Y.$$

- That is, $\hat{\beta}$ is the "best" estimator for β according to the ordinary least squares (OLS) criterion.
- $\hat{\beta}$ is called the OLS estimator for β .
- $\hat{\beta}$ is an observable, random vector.

Definition

- Define $e = Y X\hat{\beta}$.
- The *e_i*'s are called *residuals*.
- e is an observable, random vector.
- $e \perp X$.

$$MSE = rac{1}{n} \sum_{i=1}^{n} e_i^2 = rac{1}{n} \|e\|^2 = (1 - R^2) \operatorname{Var}(Y)$$

 $RMS = \sqrt{MSE}$

∃ >

$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$	$Y = X\hat{eta} + e$
$\epsilon = \mathbf{Y} - \mathbf{X}eta$	$oldsymbol{e} = oldsymbol{Y} - oldsymbol{X} \hat{eta}$
β is an unknown, constant parameter	\hat{eta} is observable and random
ϵ is unobservable and random	e is observable and random
Errors/disturbance terms	Residuals

æ

イロト イポト イヨト イヨ

Theorem

The OLS estimator $\hat{\beta}$ is conditionally unbiased.

$$E(\hat{\beta} \mid X) = \beta$$

A >

Theorem

- Assume the disturbance terms ϵ_i are normally distributed.
- Then the OLS estimator β̂ is the maximum likelihood estimator (MLE) for β.

- 2 Section 4.1: Introduction to Multiple Regression
- 3 Section 4.2: Standard Errors
- 4 Section 4.3: Explained Variance in Multiple Regression
- 5 Section 4.4: What Happens if Assumptions Break Down?

4 A N

→ ∃ →

• Let X_i be the *i*th row of X, for i = 1, ..., n.

$$Y = X\beta + \epsilon$$
$$Y_i = X_i\beta + \epsilon_i = \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \epsilon_i$$
$$Y = X\hat{\beta} + e$$
$$Y_i = X_i\hat{\beta} + e_i = \hat{\beta}_1 X_{i1} + \dots + \hat{\beta}_p X_{ip} + e_i$$

• The predicted or fitted values of Y are

$$\hat{Y} = X\hat{eta}$$

 $\hat{Y}_i = X_i\hat{eta} = \hat{eta}_1 X_{i1} + \dots + \hat{eta}_p X_{ip}$
• Note that

 $e = Y - \hat{Y}$

۲

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Hat Matrix

Definition

The hat matrix is

$$H = X(X'X)^{-1}X'$$

 $\hat{Y} = HY$

Properties:

- 2 *H* is symmetric, and so is I H.
- **(a)** *H* is idempotent ($H^2 = H$), and so is I H
- X is invariant under H, that is, HX = X
- e = (Y HY), and $e \perp X$. (If X contains a column of ones, then $\sum_{i=1}^{n} e_i = 0$.)

→ ∃ →

Definition

The column space of X is

$$cols(X) = \{X\gamma \mid \gamma \in \mathbb{R}^p\}.$$

Proposition

- *H* is the $n \times n$ matrix that projects \mathbb{R}^n orthogonally onto cols(X).
- \hat{Y} is the orthogonal projection of Y onto cols(X), that is $\hat{Y} = HY$.

Theorem

The estimator

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n e_i^2 = \frac{1}{n-p} \|e\|^2$$

is a conditionally unbiased estimator for σ^2 .

$$E(\hat{\sigma}^2 \mid X) = \sigma^2$$

This is why we require n > p.

The Covariance Matrix of $\hat{\beta}$

- The columns of *X* don't have to be orthogonal to each other.
- The random errors don't have to be normally distributed.

- 2 Section 4.1: Introduction to Multiple Regression
- 3 Section 4.2: Standard Errors

4 Section 4.3: Explained Variance in Multiple Regression

5 Section 4.4: What Happens if Assumptions Break Down?

Proposition

If a multiple regression model has an intercept term, then

 $\operatorname{Var}(Y) = \operatorname{Var}(X\hat{\beta}) + \operatorname{Var}(e).$

• Reminder:

$$\operatorname{Var}(Y) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})^2.$$

4 A N

★ ∃ →

$$\operatorname{Var}(Y) = \operatorname{Var}(X\hat{\beta}) + \operatorname{Var}(e).$$

Definition

Consider a multiple regression model with an intercept term.

- Var(*Y*) is the total variance of the response variable.
- Var(Xβ̂) is the variance "explained" by the explanatory variables X.
- Var(e) is the "unexplained" or "residual" variance.
- The fraction of variance "explained" by the model is

$$R^2 = rac{\operatorname{Var}(X\hat{eta})}{\operatorname{Var}(Y)}.$$

• The fraction of variance "explained" by the model is

$$R^2 = rac{\operatorname{Var}(X\hat{eta})}{\operatorname{Var}(Y)}.$$

- Sometimes called multiple R², multiple correlation coefficient, or coefficient of determination.
- $0 \le R^2 \le 1$
- For a simple linear regression model, $R^2 = r^2$.
- If a multiple linear regression model is appropriate, R² measures how well the model fits the data, with values close to one indicating better fit.

```
Console ~/ 🔿
> mymodel=lm(Y~X1+X2+X3)
> summary(mymodel)
Call:
lm(formula = Y \sim \times 1 + \times 2 + \times 3)
Residuals:
     Min
               10 Median
                                 30
                                         Мах
-23.5493 -6.4823 0.7492 5.5936 24.9199
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.04082 2.94308 17.003 < 2e-16 ***
\times 1
           4.43642 0.31869 13.921 < 2e-16 ***
Χ2
          21.64408 3.12069 6.936 4.7e-10 ***
X3
          -0.55334 0.03271 -16.919 < 2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.463 on 96 degrees of freedom
Multiple R-squared: 0.8593, Adjusted R-squared: 0.855
F-statistic: 195.5 on 3 and 96 DF. p-value: < 2.2e-16
> names(summary(mymodel))
 [1] "call"
                     "terms"
                                     "residuals"
                                                     "coefficients"
 [5] "aliased"
                                     "df"
                                                     "r.squared"
                     "siama"
 [9] "adj.r.squared" "fstatistic"
                                     "cov.unscaled"
> summarv(mvmodel)$r.squared
[1] 0.8593479
S
```

(日)

— F

 $R^2 = 0.9709$

æ

æ

æ

 $R^2 = 0.0517$

æ

æ

・ロト ・ 日 ト ・ 日 ト

* 臣

(Tarleton State University)

æ

"...over the period 1950–1999, the correlation between the purchasing power of the United States dollar each year and the death rate from lung cancer that year is -0.95. So $R^2 = (-0.95)^2 = 0.9...$ "

Inappropriate Model 1

 $R^{2} = 0$

æ

 $R^2 = 0.9925$

(Tarleton State University)

-

æ

- 2 Section 4.1: Introduction to Multiple Regression
- 3 Section 4.2: Standard Errors
- 4 Section 4.3: Explained Variance in Multiple Regression
- Section 4.4: What Happens if Assumptions Break Down?

4 A N

• If $E(\epsilon \mid X) \neq 0$, the bias in $\hat{\beta}$ is

$$(X'X)^{-1}X'E(\epsilon \mid X).$$

- If $E(\epsilon \mid X) = 0$, but $cov(\epsilon \mid X) \neq \sigma^2 I$, then
 - $\hat{\beta}$ will be unbiased, but
 - We can't guarantee that cov(β̂ | X) = σ²(X'X)⁻¹. Therefore, all of our estimates for SEs will be meaningless.