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A Scatterplot

We have a sequence of pairs (xi , yi), i = 1, . . . ,n.
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Sample Statistics

We have a sequence of pairs (xi , yi), i = 1, . . . ,n.

x̄ =
1
n

n∑
i=1

xi

Var(x) =
1
n

n∑
i=1

(xi − x̄)2, and sx =
√

Var(x).

ȳ , Var(y), and sy defined similarly.
Sample correlation coefficient:

r =
1
n

n∑
i=1

xi − x̄
sx

· yi − ȳ
sy

−1 ≤ r ≤ 1
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x̄ = 493 and ȳ = 482
sx = 73 and sy = 79
r = 0.44
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The Regression Line

Regression Line
I Goes through the point of averages (x̄ , ȳ)
I slope = r sy

sx
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The SD Line

SD Line
I Goes through the point of averages (x̄ , ȳ)
I slope = sign(r)

sy
sx
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Regression Line: y = 0.483x + 244
SD Line: y = 1.09x − 57.7
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Multiple Regression Model

Yi = β1Xi1 + · · ·+ βpXip + εi , for i = 1, . . . ,n.

Verbali = β1 + β2Mathi + εi , for i = 1, . . . ,3146.

Post-testi =β1 + β2Pre-testi + β3MathSATi + β4VerbSATi

+ β5HSranki + β6Clickersi + β7GroupWorki

+ εi , for i = 1, . . . ,140.

Many Possible Examples!
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Multiple Regression Model

Yi = β1Xi1 + · · ·+ βpXip + εi , for i = 1, . . . ,n.

 Y1
...

Yn

 =

 X11 · · · X1p
...

...
Xn1 · · · Xnp


 β1

...
βp

 +

 ε1
...
εn


Y = Xβ + ε

Y is an n × 1 observable random vector. Called dependent,
response, or output variable.
X is an n × p observable matrix. Can be viewed as random or
constant. The columns are called independent, explanatory,
predictor, control or input variables. Also called covariates.
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Multiple Regression Model

Yi = β1Xi1 + · · ·+ βpXip + εi , for i = 1, . . . ,n.

 Y1
...

Yn

 =

 X11 · · · X1p
...

...
Xn1 · · · Xnp


 β1

...
βp

 +

 ε1
...
εn


Y = Xβ + ε

X is also called the design matrix. If the first column of X is all 1’s
then the model has an intercept term.
β is a constant, unobservable vector. It is one of the model
parameters. The βj ’s are called regression coefficients.
ε is a random, unobservable vector. The εi ’s are called
error/disturbance terms.
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Mathematical Assumptions

 Y1
...

Yn

 =

 X11 · · · X1p
...

...
Xn1 · · · Xnp


 β1

...
βp

 +

 ε1
...
εn


Y = Xβ + ε

p < n, and X has full rank.
ε1, . . . , εn are IID with mean 0 and variance σ2 > 0. Note that σ is
another model parameter, which is constant and unobservable.

E(ε) = 0 and cov(ε) = σ2I.

If X is random, ε is independent of X . Notation: ε ⊥⊥ X .
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The OLS Estimator

Theorem
The sum of square errors ‖Y − Xγ‖2 is minimized when

γ = β̂ = (X ′X )−1X ′Y .

That is, β̂ is the “best” estimator for β according to the ordinary
least squares (OLS) criterion.
β̂ is called the OLS estimator for β.
β̂ is an observable, random vector.
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Residuals

Definition
Define e = Y − X β̂.
The ei ’s are called residuals.
e is an observable, random vector.
e ⊥ X .

MSE =
1
n

n∑
i=1

e2
i =

1
n
‖e‖2 = (1− R2)Var(Y )

RMS =
√

MSE
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Some Comparisons

Y = Xβ + ε Y = X β̂ + e
ε = Y − Xβ e = Y − X β̂

β is an unknown, constant parameter β̂ is observable and random
ε is unobservable and random e is observable and random

Errors/disturbance terms Residuals
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The Maximum Likelihood Estimator

Theorem
The OLS estimator β̂ is conditionally unbiased.

E(β̂ | X ) = β
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The OLS Estimator is the MLE

Theorem
Assume the disturbance terms εi are normally distributed.
Then the OLS estimator β̂ is the maximum likelihood estimator
(MLE) for β.
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Let Xi be the i th row of X , for i = 1, . . . ,n.

Y = Xβ + ε

Yi = Xiβ + εi = β1Xi1 + · · ·+ βpXip + εi

Y = X β̂ + e

Yi = Xi β̂ + ei = β̂1Xi1 + · · ·+ β̂pXip + ei

The predicted or fitted values of Y are

Ŷ = X β̂

Ŷi = Xi β̂ = β̂1Xi1 + · · ·+ β̂pXip

Note that
e = Y − Ŷ
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The Hat Matrix

Definition
The hat matrix is

H = X (X ′X )−1X ′

Ŷ = HY

Properties:

1 e = (I − H)Y
2 H is symmetric, and so is I − H.
3 H is idempotent (H2 = H), and so is I − H
4 X is invariant under H, that is, HX = X
5 e = (Y − HY ), and e ⊥ X . (If X contains a column of ones, then∑n

i=1 ei = 0.)
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The Hat Matrix is a Projection Matrix

Definition
The column space of X is

cols(X ) = {Xγ | γ ∈ Rp}.

Proposition
H is the n × n matrix that projects Rn orthogonally onto cols(X ).
Ŷ is the orthogonal projection of Y onto cols(X ), that is Ŷ = HY .
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Estimating σ2

Theorem
The estimator

σ̂2 =
1

n − p

n∑
i=1

e2
i =

1
n − p

‖e‖2

is a conditionally unbiased estimator for σ2.

E(σ̂2 | X ) = σ2

This is why we require n > p.
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The Covariance Matrix of β̂

Theorem

cov(β̂ | X ) = σ2(X ′X )−1

ĉov(β̂ | X ) = σ̂2(X ′X )−1

Corollary

Var(β̂j) = σ2[(X ′X )−1]jj

SE(β̂j) = σ
√

[(X ′X )−1]jj

ŜE(β̂j) = σ̂
√

[(X ′X )−1]jj
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Other Assumptions

The columns of X don’t have to be orthogonal to each other.
The random errors don’t have to be normally distributed.
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Decomposing Var(Y )

Proposition
If a multiple regression model has an intercept term, then

Var(Y ) = Var(X β̂) + Var(e).

Reminder:

Var(Y ) =
1
n

n∑
i=1

(Yi − Y )2.
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R2

Var(Y ) = Var(X β̂) + Var(e).

Definition
Consider a multiple regression model with an intercept term.

Var(Y ) is the total variance of the response variable.
Var(X β̂) is the variance “explained” by the explanatory variables
X .
Var(e) is the “unexplained” or “residual” variance.
The fraction of variance “explained” by the model is

R2 =
Var(X β̂)

Var(Y )
.
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The fraction of variance “explained” by the model is

R2 =
Var(X β̂)

Var(Y )
.

Sometimes called multiple R2, multiple correlation coefficient, or
coefficient of determination.
0 ≤ R2 ≤ 1
For a simple linear regression model, R2 = r2.
If a multiple linear regression model is appropriate, R2 measures
how well the model fits the data, with values close to one
indicating better fit.
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Plot of Y vs. X

R2 = 0.9709
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Plot of Ŷ vs. X
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Plot of e vs. X
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Plot of Y vs. X

R2 = 0.0517
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Plot of Ŷ vs. X
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Plot of e vs. X
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Correlation is Not Causation

“...over the period 1950–1999, the correlation between the
purchasing power of the United States dollar each year and
the death rate from lung cancer that year is −0.95. So
R2 = (−0.95)2 = 0.9...”
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Inappropriate Model 1

R2 = 0
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Inappropriate Model 2

R2 = 0.9925
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What Happens if Assumptions Break Down?

If E(ε | X ) 6= 0, the bias in β̂ is

(X ′X )−1X ′E(ε | X ).

If E(ε | X ) = 0, but cov(ε | X ) 6= σ2I, then
I β̂ will be unbiased, but
I We can’t guarantee that cov(β̂ | X ) = σ2(X ′X )−1. Therefore, all of

our estimates for SEs will be meaningless.
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