(Tarleton State University)

Math 5305 Notes

Chapter 3

Jesse Crawford

Department of Mathematics
Tarleton State University

Chapter 3

1/34



0 Section 3.1: Introduction
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Matrices and Addition

Definition
@ Suppose n and m are positive integers.
@ The set of n x m matrices with real entries is denoted by R,

v

Definition
@ Suppose A, B € R™M,
@ Define A+ B € R™™py

(A+B)j=Aj+Bjfori=1,...,nandj=1,...,m.
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Multiplication

Definition
@ Suppose A € R"*Y and B € R/*K,
@ Define AB € R'*K by

J
(AB)ik =Y AjBjy,fori=1,....landk =1,... K.
j=1

Proposition

Consider matrices A € R'*J, B e R/*K C e RK*L and D e RLXM,
Then, foranyi=1,....land m=1,... M,

J K L
(ABCD)im = > > "> AjBjCr¢Dim.

j=1 k=1 =1
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Transpose and Trace

Definition
@ Suppose A € R™M,
@ Define A’ € R™*" by

(A)ji=Ajfori=1,....nandj=1,...,m.

o If A = A, then Ais called symmetric.

Definition
@ Suppose A € R™",
@ Define the trace of A, trace(A) by

n
trace(A) = Z A;.

i=1

(Tarleton State University) Chapter 3 5/34



Inner Products and Norms

Definition
Given two vectors u, v € R”, their inner product is

Uu-v=uv=uvy+- -+ Upvp.

Definition
The norm, length, or magnitude of a vector u € R" is

Jul = vVuu=/u?+-- + U3
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e Section 3.2: Determinants and Inverses
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@ If Ais a square matrix, its determinant is denoted by det(A) or |A|.
@ Examples:
1 2
‘5 3'_1-3—5-2_—7
1 2 3
3 1 2 1 2 3
2 3 1 :1-’ ’—2‘ ’—FS“ ‘
01 1 1 1 0 1 0 1
=1.2-2-2+3:2=4
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Inverses and Kernels

Definition

An n x n matrix A is invertible if there exists an n x n matrix A~', such
that

AA T = ATTA=

Definition
The kernel of an n x m matrix A is

ker(A) = {v e R™ | Av = 0}.
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Linear Independence and Rank

Definition
@ Suppose vy, Vo, ..., Vk are vectors.
@ They are linearly independent if, for any scalars ¢, ¢y, . . ., Ck,

CiVi+Covo+---+ kv =0impliesci=c =---=¢, =0.

Definition
@ The rank of a matrix is the maximum number of linearly
independent columns it has.

@ If X is an n x p matrix, and rank(X) = p, then X has full rank.

Proposition

The rank of a matrix is the number of nonzero rows it has in reduced
row echelon form.
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The Big Theorem for Square Matrices

Theorem
For an n x n matrix A, the following are equivalent:
@ det(A) #0
@ Ais invertible
@ ker(A) = {0}
@ Forany c € R”,
Ac =0impliesc =0
@ All of the columns of A are linearly independent
@ rank(A) =n
@ A has full rank
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The Big Theorem for Nonsquare Matrices

Theorem
For an n x p matrix X, the following are equivalent:
@ ker(X) = {0}
@ For any c € RP,
Xc=0impliesc=0
@ All of the columns of X are linearly independent
@ rank(X) =p
@ X has full rank
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e Section 3.3: Random Vectors
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Covariance Between Two Random Variables

Definition
@ Let X and Y be two random variables.
@ The covariance between X and Y is

cov(X, Y) = E[(X — E(X))(Y — E(Y))] = E(XY) — E(X)E(Y)

@ The covariance measures the strength of the association between
X and Y, and the sign indicates whether the relationship is
positive or negative.
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Correlation Between Two Random Variables

Definition
@ The correlation coefficient between X and Y is
_cov(X,Y)
oxXoy
0 —1<p<1
@ Values of p near 1 indicate a strong positive relationship.
@ Values of p near —1 indicate a strong negative relationship.
@ Values of p near 0 indicate a weak or nonlinear relationship.
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Strong Positive Correlation

~ — -
e . corr(X,Y)=0.9
L T T T T T
2 4 53 8 10
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Strong Negative Correlation

w |
. . corr(x,y) =-0.9

o

~ - L)

o

o - *
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Virtually No Correlation

“7 ’ corr(X,Y) = 0.06
J—r______ri‘————_—
> ) 6 5 0
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Random Vectors

Definition
@ A random vector is a vector whose components are random
variables.
@ If Uy, ..., Uy are random variables, then
Us
u=| :
Un

is a random vector.
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Expected Value of a Random Vector

Definition
@ Given a random vector
Uy
U= :
Un
the expected value of U is
E(Uy)
E(U)=|
E(Un)
°
[E(U)]i = E(U;), for every i
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Expected Value of a Random Matrix

Definition
@ Given a random matrix
Ut Uim
U= : :
Un1 T Unm
the expected value of U is
E(Ui1) -+ E(Uim)
EU)=| 5
E(Un) -+ E(Unm)
°
[E(U)]j = E(Uj), for every i, j
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Covariance Matrix of a Random Vector

Definition

@ Given a random vector
Us
U= :
Un

the covariance matrix of U is

Ui — E(Uy)

cov(U) = E (Ui — E(Uy), ..., Up— E(Up))

Un — E(Up)
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More on Covariance

cov(U) = E[(U - E(U))(U — E(U))] = E(UU) - E(U)E(UY

@ The jth diagonal element of cov(U) is Var(U;).
@ The (/,/) entry of cov(U) is cov(U;, U)).
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e Section 3.4: Positive Definite Matrices
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Positive Definite Matrices

Definition

An n x nmatrix G is non-negative definite if
@ G is symmetric, and
@ X'Gx >0, for all x € R".

Definition
An n x nmatrix G is positive definite if
@ G is symmetric, and

@ x'Gx > 0, for all nonzero x € R".

@ Note that any positive definite matrix is non-negative definite.
@ We will denote the set of n x n positive definite matrices by PD(n).
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Diagonal and Orthogonal Matrices

Definition
A matrix D is diagonal if all of its entries off the diagonal are zero,

Dj=0wheni#j.

Definition
@ A matrix R is orthogonal if R'R = I.
@ If Ris orthogonal, R~ = R’, and RR' = I.
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Diagonalizing a Positive Definite Matrix

Theorem
@ G is non-negative definite iff there exists
@ a diagonal matrix D whose diagonal entries are non-negative and
@ an orthogonal matrix R,
@ such that G = RDR’

@ This theorem also holds if we replace both instances of
“non-negative” with "positive”.

@ The columns of R are the eigenvectors of G.

@ The diagonal entries of D are the eigenvalues of G.
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Eigenvalues and Eigenvectors

Definition
Suppose A € R™" x € R" is nonzero, and A\ € R, such that

Ax = AX.

@ Then X is an eigenvalue of A, and
@ x is an eigenvector of A corresponding to .
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e Section 3.5: The Normal Distribution
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Definition (Univariate Normal Distribution)

@ The normal distribution on R with mean p € R and variance
o2 > 0 is given by the p.d.f.

1 (x — p)?
= — R.
f(x) T exp { 552 | for x €
@ Denoted by N(u,0?)

@ If X ~ N(u,0?), then E(X) = p, and Var(X) = o2, so these
parameters deserve their names.

Proposition
@ If X ~ N(u,0?), then

7= X1 No,1).
g

@ The distribution N(0, 1) is called the standard normal distribution.
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Definition (Multivariate Normal Distribution)

@ The multivariate normal distribution on R” with mean p € R and
covariance matrix ¥ € PD(n) is given by the p.d.f.

f(x) = (\/127> \/dlﬁ exp [—;(X — )T (x — p)|, for x € R,

@ Denoted by N(u, X).

@ If X ~ N(u,X), then E(X) = u, and cov(X) = X, so these
parameters deserve their names.

@ The random variables Xj, ..., X, are jointly normal.
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Covariance and Independence

Definition
@ Two random variables X and Y with cov(X, Y) = 0 are said to be
uncorrelated.
@ In general, if X and Y are independent, then X and Y are
uncorrelated:

X and Yindependent = cov(X, Y) =0.

@ The converse is generally not true. There are examples of
uncorrelated random variables that are dependent.

@ For jointly normal random variables, independence is equivalent to
being uncorrelated.

v
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Proposition
@ Suppose Zj,...,Z, are IID N(0O, 1) random variables.
@ ThenZ =(Zy,...,2Z,) ~ N(O, ).

Proposition

@ Suppose 1 € R” and X is an n x n non-negative definite matrix.

;
@ Note that X has a non-negative definite square root 2.

@ Then X ~ N(u, X) iff there exists a random vector Z ~ N(0, /),
such that

1
X=p+522.
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Proposition
@ Let X ~ N(pu,x), Ac R™" and c,d € R".

o
AX ~ N(Ap, ATA)

@ That is, AX has a multivariate normal distribution, and

E(AX) = AE(X) and cov(AX) = Acov(X)A'.

@ The covariance between ¢’ X and d’'X is

cov(c'X,d'X) = c'xd.
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