Math 5305 Notes

 Chapter 3Jesse Crawford

Department of Mathematics
Tarleton State University

Outline

(1) Section 3.1: Introduction
(2) Section 3.2: Determinants and Inverses
(3) Section 3.3: Random Vectors
4. Section 3.4: Positive Definite Matrices
(5) Section 3.5: The Normal Distribution

Matrices and Addition

Definition

- Suppose n and m are positive integers.
- The set of $n \times m$ matrices with real entries is denoted by $\mathbb{R}^{n \times m}$.

Definition

- Suppose $A, B \in \mathbb{R}^{n \times m}$.
- Define $A+B \in \mathbb{R}^{n \times m}$ by

$$
(A+B)_{i j}=A_{i j}+B_{i j}, \text { for } i=1, \ldots, n \text { and } j=1, \ldots, m
$$

Multiplication

Definition

- Suppose $A \in \mathbb{R}^{I \times J}$ and $B \in \mathbb{R}^{J \times K}$.
- Define $A B \in \mathbb{R}^{1 \times K}$ by

$$
(A B)_{i k}=\sum_{j=1}^{J} A_{i j} B_{j k}, \text { for } i=1, \ldots, I \text { and } k=1, \ldots, K .
$$

Proposition

Consider matrices $A \in \mathbb{R}^{I \times J}, B \in \mathbb{R}^{J \times K}, C \in \mathbb{R}^{K \times L}$, and $D \in \mathbb{R}^{L \times M}$. Then, for any $i=1, \ldots, I$ and $m=1, \ldots, M$,

$$
(A B C D)_{i m}=\sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{\ell=1}^{L} A_{i j} B_{j k} C_{k \ell} D_{\ell m} .
$$

Transpose and Trace

Definition

- Suppose $A \in \mathbb{R}^{n \times m}$.
- Define $A^{\prime} \in \mathbb{R}^{m \times n}$ by

$$
\left(A^{\prime}\right)_{j i}=A_{i j}, \text { for } i=1, \ldots, n \text { and } j=1, \ldots, m .
$$

- If $A^{\prime}=A$, then A is called symmetric.

Definition

- Suppose $A \in \mathbb{R}^{n \times n}$.
- Define the trace of A, $\operatorname{trace}(A)$ by

$$
\operatorname{trace}(A)=\sum_{i=1}^{n} A_{i j}
$$

Inner Products and Norms

Definition

Given two vectors $u, v \in \mathbb{R}^{n}$, their inner product is

$$
u \cdot v=u^{\prime} v=u_{1} v_{1}+\cdots+u_{n} v_{n} .
$$

Definition

The norm, length, or magnitude of a vector $u \in \mathbb{R}^{n}$ is

$$
\|u\|=\sqrt{u^{\prime} u}=\sqrt{u_{1}^{2}+\cdots+u_{n}^{2}}
$$

Outline

(1) Section 3.1: Introduction

(2) Section 3.2: Determinants and Inverses
(3) Section 3.3: Random Vectors
4) Section 3.4: Positive Definite Matrices
(5) Section 3.5: The Normal Distribution

Determinants

- If A is a square matrix, its determinant is $\operatorname{denoted}$ by $\operatorname{det}(A)$ or $|A|$.
- Examples:

$$
\begin{aligned}
& \left|\begin{array}{ll}
1 & 2 \\
5 & 3
\end{array}\right|=1 \cdot 3-5 \cdot 2=-7 \\
\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
0 & 1 & 1
\end{array}\right| & =1 \cdot\left|\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right|-2\left|\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right|+3 \cdot\left|\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right| \\
& =1 \cdot 2-2 \cdot 2+3 \cdot 2=4
\end{aligned}
$$

Inverses and Kernels

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix A^{-1}, such that

$$
A A^{-1}=A^{-1} A=I .
$$

Definition

The kernel of an $n \times m$ matrix A is

$$
\operatorname{ker}(A)=\left\{v \in \mathbb{R}^{m} \mid A v=0\right\} .
$$

Linear Independence and Rank

Definition

- Suppose $v_{1}, v_{2}, \ldots, v_{k}$ are vectors.
- They are linearly independent if, for any scalars $c_{1}, c_{2}, \ldots, c_{k}$,

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0 \text { implies } c_{1}=c_{2}=\cdots=c_{k}=0 .
$$

Definition

- The rank of a matrix is the maximum number of linearly independent columns it has.
- If X is an $n \times p$ matrix, and $\operatorname{rank}(X)=p$, then X has full rank.

Proposition

The rank of a matrix is the number of nonzero rows it has in reduced row echelon form.

The Big Theorem for Square Matrices

Theorem

For an $n \times n$ matrix A, the following are equivalent:

- $\operatorname{det}(A) \neq 0$
- A is invertible
- $\operatorname{ker}(A)=\{0\}$
- For any $c \in \mathbb{R}^{n}$,

$$
A c=0 \text { implies } c=0
$$

- All of the columns of A are linearly independent
- $\operatorname{rank}(A)=n$
- A has full rank

The Big Theorem for Nonsquare Matrices

Theorem

For an $n \times p$ matrix X, the following are equivalent:

- $\operatorname{ker}(X)=\{0\}$
- For any $c \in \mathbb{R}^{p}$,

$$
X c=0 \text { implies } c=0
$$

- All of the columns of X are linearly independent
- $\operatorname{rank}(X)=p$
- X has full rank

Outline

(1) Section 3.1: Introduction
(2) Section 3.2: Determinants and Inverses
(3) Section 3.3: Random Vectors
4) Section 3.4: Positive Definite Matrices
(5) Section 3.5: The Normal Distribution

Covariance Between Two Random Variables

Definition

- Let X and Y be two random variables.
- The covariance between X and Y is

$$
\operatorname{cov}(X, Y)=E[(X-E(X))(Y-E(Y))]=E(X Y)-E(X) E(Y)
$$

- The covariance measures the strength of the association between X and Y, and the sign indicates whether the relationship is positive or negative.

Correlation Between Two Random Variables

Definition

- The correlation coefficient between X and Y is

$$
\rho=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

- $-1 \leq \rho \leq 1$
- Values of ρ near 1 indicate a strong positive relationship.
- Values of ρ near - 1 indicate a strong negative relationship.
- Values of ρ near 0 indicate a weak or nonlinear relationship.

Strong Positive Correlation

Strong Negative Correlation

Virtually No Correlation

Random Vectors

Definition

- A random vector is a vector whose components are random variables.
- If U_{1}, \ldots, U_{n} are random variables, then

$$
U=\left(\begin{array}{c}
U_{1} \\
\vdots \\
U_{n}
\end{array}\right)
$$

is a random vector.

Expected Value of a Random Vector

Definition

- Given a random vector

$$
U=\left(\begin{array}{c}
U_{1} \\
\vdots \\
U_{n}
\end{array}\right)
$$

the expected value of U is

$$
E(U)=\left(\begin{array}{c}
E\left(U_{1}\right) \\
\vdots \\
E\left(U_{n}\right)
\end{array}\right)
$$

$$
[E(U)]_{i}=E\left(U_{i}\right), \text { for every } i
$$

Expected Value of a Random Matrix

Definition

- Given a random matrix

$$
U=\left(\begin{array}{ccc}
U_{11} & \cdots & U_{1 m} \\
\vdots & & \vdots \\
U_{n 1} & \cdots & U_{n m}
\end{array}\right)
$$

the expected value of U is

$$
E(U)=\left(\begin{array}{ccc}
E\left(U_{11}\right) & \cdots & E\left(U_{1 m}\right) \\
\vdots & & \vdots \\
E\left(U_{n 1}\right) & \cdots & E\left(U_{n m}\right)
\end{array}\right)
$$

$$
[E(U)]_{i j}=E\left(U_{i j}\right) \text {, for every } i, j
$$

Covariance Matrix of a Random Vector

Definition

- Given a random vector

$$
U=\left(\begin{array}{c}
U_{1} \\
\vdots \\
U_{n}
\end{array}\right)
$$

the covariance matrix of U is

$$
\operatorname{cov}(U)=E\left\{\left(\begin{array}{c}
U_{1}-E\left(U_{1}\right) \\
\vdots \\
U_{n}-E\left(U_{n}\right)
\end{array}\right)\left(U_{1}-E\left(U_{1}\right), \ldots, U_{n}-E\left(U_{n}\right)\right)\right\}
$$

More on Covariance

$$
\operatorname{cov}(U)=E\left[(U-E(U))(U-E(U))^{\prime}\right]=E\left(U U^{\prime}\right)-E(U) E(U)^{\prime}
$$

- The i th diagonal element of $\operatorname{cov}(U)$ is $\operatorname{Var}\left(U_{i}\right)$.
- The (i, j) entry of $\operatorname{cov}(U)$ is $\operatorname{cov}\left(U_{i}, U_{j}\right)$.

Outline

(1) Section 3.1: Introduction
(2) Section 3.2: Determinants and Inverses
(3) Section 3.3: Random Vectors
4) Section 3.4: Positive Definite Matrices
(5) Section 3.5: The Normal Distribution

Positive Definite Matrices

Definition

An $n \times n$ matrix G is non-negative definite if

- G is symmetric, and
- $x^{\prime} G x \geq 0$, for all $x \in \mathbb{R}^{n}$.

Definition

An $n \times n$ matrix G is positive definite if

- G is symmetric, and
- $x^{\prime} G x>0$, for all nonzero $x \in \mathbb{R}^{n}$.
- Note that any positive definite matrix is non-negative definite.
- We will denote the set of $n \times n$ positive definite matrices by $\operatorname{PD}(n)$.

Diagonal and Orthogonal Matrices

Definition

A matrix D is diagonal if all of its entries off the diagonal are zero,

$$
D_{i j}=0 \text { when } i \neq j
$$

Definition

- A matrix R is orthogonal if $R^{\prime} R=I$.
- If R is orthogonal, $R^{-1}=R^{\prime}$, and $R R^{\prime}=l$.

Diagonalizing a Positive Definite Matrix

Theorem

- G is non-negative definite iff there exists
- a diagonal matrix D whose diagonal entries are non-negative and
- an orthogonal matrix R,
- such that $G=R D R^{\prime}$
- This theorem also holds if we replace both instances of "non-negative" with "positive".
- The columns of R are the eigenvectors of G.
- The diagonal entries of D are the eigenvalues of G.

Eigenvalues and Eigenvectors

Definition

Suppose $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}$ is nonzero, and $\lambda \in \mathbb{R}$, such that

$$
A x=\lambda x
$$

- Then λ is an eigenvalue of A, and
- x is an eigenvector of A corresponding to λ.

Outline

(1) Section 3.1: Introduction
(2) Section 3.2: Determinants and Inverses
(3) Section 3.3: Random Vectors
4) Section 3.4: Positive Definite Matrices
(5) Section 3.5: The Normal Distribution

Definition (Univariate Normal Distribution)

- The normal distribution on \mathbb{R} with mean $\mu \in \mathbb{R}$ and variance $\sigma^{2}>0$ is given by the p.d.f.

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right], \text { for } x \in \mathbb{R} .
$$

- Denoted by $N\left(\mu, \sigma^{2}\right)$
- If $X \sim N\left(\mu, \sigma^{2}\right)$, then $E(X)=\mu$, and $\operatorname{Var}(X)=\sigma^{2}$, so these parameters deserve their names.

Proposition

- If $X \sim N\left(\mu, \sigma^{2}\right)$, then

$$
Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

- The distribution $N(0,1)$ is called the standard normal distribution.

Definition (Multivariate Normal Distribution)

- The multivariate normal distribution on \mathbb{R}^{n} with mean $\mu \in \mathbb{R}^{n}$ and covariance matrix $\Sigma \in \mathbf{P D}(n)$ is given by the p.d.f.

$$
f(x)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \frac{1}{\sqrt{\operatorname{det} \Sigma}} \exp \left[-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right], \text { for } x \in \mathbb{R}^{n}
$$

- Denoted by $N(\mu, \Sigma)$.
- If $X \sim N(\mu, \Sigma)$, then $E(X)=\mu$, and $\operatorname{cov}(X)=\Sigma$, so these parameters deserve their names.
- The random variables X_{1}, \ldots, X_{n} are jointly normal.

Covariance and Independence

Definition

- Two random variables X and Y with $\operatorname{cov}(X, Y)=0$ are said to be uncorrelated.
- In general, if X and Y are independent, then X and Y are uncorrelated:

$$
X \text { and } Y \text { independent } \Rightarrow \operatorname{cov}(X, Y)=0
$$

- The converse is generally not true. There are examples of uncorrelated random variables that are dependent.
- For jointly normal random variables, independence is equivalent to being uncorrelated.

Proposition

- Suppose Z_{1}, \ldots, Z_{n} are IID $N(0,1)$ random variables.
- Then $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{\prime} \sim N(0, l)$.

Proposition

- Suppose $\mu \in \mathbb{R}^{n}$ and Σ is an $n \times n$ non-negative definite matrix.
- Note that Σ has a non-negative definite square root $\Sigma^{\frac{1}{2}}$.
- Then $X \sim N(\mu, \Sigma)$ iff there exists a random vector $Z \sim N(0, I)$, such that

$$
X=\mu+\Sigma^{\frac{1}{2}} Z .
$$

Proposition

- Let $X \sim N(\mu, \Sigma), A \in \mathbb{R}^{m \times n}$, and $c, d \in \mathbb{R}^{n}$.

$$
A X \sim N\left(A \mu, A \Sigma A^{\prime}\right)
$$

- That is, $A X$ has a multivariate normal distribution, and

$$
E(A X)=A E(X) \text { and } \operatorname{cov}(A X)=A \operatorname{cov}(X) A^{\prime}
$$

- The covariance between $c^{\prime} X$ and $d^{\prime} X$ is

$$
\operatorname{cov}\left(c^{\prime} X, d^{\prime} X\right)=c^{\prime} \Sigma d
$$

