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Matrices and Addition

Definition
Suppose n and m are positive integers.
The set of n ×m matrices with real entries is denoted by Rn×m.

Definition
Suppose A,B ∈ Rn×m.
Define A + B ∈ Rn×m by

(A + B)ij = Aij + Bij , for i = 1, . . . ,n and j = 1, . . . ,m.
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Multiplication

Definition
Suppose A ∈ RI×J and B ∈ RJ×K .
Define AB ∈ RI×K by

(AB)ik =
J∑

j=1

AijBjk , for i = 1, . . . , I and k = 1, . . . ,K .

Proposition

Consider matrices A ∈ RI×J , B ∈ RJ×K , C ∈ RK×L, and D ∈ RL×M .
Then, for any i = 1, . . . , I and m = 1, . . . ,M,

(ABCD)im =
J∑

j=1

K∑
k=1

L∑
`=1

AijBjkCk`D`m.
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Transpose and Trace

Definition
Suppose A ∈ Rn×m.
Define A′ ∈ Rm×n by

(A′)ji = Aij , for i = 1, . . . ,n and j = 1, . . . ,m.

If A′ = A, then A is called symmetric.

Definition
Suppose A ∈ Rn×n.
Define the trace of A, trace(A) by

trace(A) =
n∑

i=1

Aii .
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Inner Products and Norms

Definition
Given two vectors u, v ∈ Rn, their inner product is

u · v = u′v = u1v1 + · · ·+ unvn.

Definition
The norm, length, or magnitude of a vector u ∈ Rn is

‖u‖ =
√

u′u =
√

u2
1 + · · ·+ u2

n .
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Determinants

If A is a square matrix, its determinant is denoted by det(A) or |A|.
Examples: ∣∣∣∣ 1 2

5 3

∣∣∣∣ = 1 · 3− 5 · 2 = −7

∣∣∣∣∣∣
1 2 3
2 3 1
0 1 1

∣∣∣∣∣∣ = 1 ·
∣∣∣∣ 3 1

1 1

∣∣∣∣− 2
∣∣∣∣ 2 1

0 1

∣∣∣∣+ 3 ·
∣∣∣∣ 2 3

0 1

∣∣∣∣
= 1 · 2− 2 · 2 + 3 · 2 = 4

(Tarleton State University) Chapter 3 8 / 34



Inverses and Kernels

Definition
An n × n matrix A is invertible if there exists an n × n matrix A−1, such
that

AA−1 = A−1A = I.

Definition
The kernel of an n ×m matrix A is

ker(A) = {v ∈ Rm | Av = 0}.
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Linear Independence and Rank

Definition
Suppose v1, v2, . . . , vk are vectors.
They are linearly independent if, for any scalars c1, c2, . . . , ck ,

c1v1 + c2v2 + · · ·+ ckvk = 0 implies c1 = c2 = · · · = ck = 0.

Definition
The rank of a matrix is the maximum number of linearly
independent columns it has.
If X is an n × p matrix, and rank(X ) = p, then X has full rank.

Proposition
The rank of a matrix is the number of nonzero rows it has in reduced
row echelon form.
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The Big Theorem for Square Matrices

Theorem
For an n × n matrix A, the following are equivalent:

det(A) 6= 0
A is invertible
ker(A) = {0}
For any c ∈ Rn,

Ac = 0 implies c = 0

All of the columns of A are linearly independent
rank(A) = n
A has full rank
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The Big Theorem for Nonsquare Matrices

Theorem
For an n × p matrix X , the following are equivalent:

ker(X ) = {0}
For any c ∈ Rp,

Xc = 0 implies c = 0

All of the columns of X are linearly independent
rank(X ) = p
X has full rank
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Covariance Between Two Random Variables

Definition
Let X and Y be two random variables.
The covariance between X and Y is

cov(X ,Y ) = E [(X − E(X ))(Y − E(Y ))] = E(XY )− E(X )E(Y )

The covariance measures the strength of the association between
X and Y , and the sign indicates whether the relationship is
positive or negative.
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Correlation Between Two Random Variables

Definition
The correlation coefficient between X and Y is

ρ =
cov(X ,Y )

σXσY
.

−1 ≤ ρ ≤ 1
Values of ρ near 1 indicate a strong positive relationship.
Values of ρ near −1 indicate a strong negative relationship.
Values of ρ near 0 indicate a weak or nonlinear relationship.
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Strong Positive Correlation
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Strong Negative Correlation
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Virtually No Correlation
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Random Vectors

Definition
A random vector is a vector whose components are random
variables.
If U1, . . . ,Un are random variables, then

U =

 U1
...

Un


is a random vector.
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Expected Value of a Random Vector

Definition
Given a random vector

U =

 U1
...

Un


the expected value of U is

E(U) =

 E(U1)
...

E(Un)


[E(U)]i = E(Ui), for every i
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Expected Value of a Random Matrix

Definition
Given a random matrix

U =

 U11 · · · U1m
...

...
Un1 · · · Unm


the expected value of U is

E(U) =

 E(U11) · · · E(U1m)
...

...
E(Un1) · · · E(Unm)


[E(U)]ij = E(Uij), for every i , j
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Covariance Matrix of a Random Vector

Definition
Given a random vector

U =

 U1
...

Un


the covariance matrix of U is

cov(U) = E


 U1 − E(U1)

...
Un − E(Un)

 (U1 − E(U1), . . . ,Un − E(Un))
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More on Covariance

cov(U) = E [(U − E(U))(U − E(U))′] = E(UU ′)− E(U)E(U)′

The i th diagonal element of cov(U) is Var(Ui).
The (i , j) entry of cov(U) is cov(Ui ,Uj).
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Positive Definite Matrices

Definition
An n × n matrix G is non-negative definite if

G is symmetric, and
x ′Gx ≥ 0, for all x ∈ Rn.

Definition
An n × n matrix G is positive definite if

G is symmetric, and
x ′Gx > 0, for all nonzero x ∈ Rn.

Note that any positive definite matrix is non-negative definite.
We will denote the set of n× n positive definite matrices by PD(n).
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Diagonal and Orthogonal Matrices

Definition
A matrix D is diagonal if all of its entries off the diagonal are zero,

Dij = 0 when i 6= j .

Definition
A matrix R is orthogonal if R′R = I.
If R is orthogonal, R−1 = R′, and RR′ = I.
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Diagonalizing a Positive Definite Matrix

Theorem
G is non-negative definite iff there exists
a diagonal matrix D whose diagonal entries are non-negative and
an orthogonal matrix R,
such that G = RDR′

This theorem also holds if we replace both instances of
“non-negative” with ”positive”.
The columns of R are the eigenvectors of G.
The diagonal entries of D are the eigenvalues of G.
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Eigenvalues and Eigenvectors

Definition
Suppose A ∈ Rn×n, x ∈ Rn is nonzero, and λ ∈ R, such that

Ax = λx .

Then λ is an eigenvalue of A, and
x is an eigenvector of A corresponding to λ.
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Definition (Univariate Normal Distribution)
The normal distribution on R with mean µ ∈ R and variance
σ2 > 0 is given by the p.d.f.

f (x) =
1

σ
√

2π
exp

[
−(x − µ)2

2σ2

]
, for x ∈ R.

Denoted by N(µ, σ2)

If X ∼ N(µ, σ2), then E(X ) = µ, and Var(X ) = σ2, so these
parameters deserve their names.

Proposition

If X ∼ N(µ, σ2), then

Z =
X − µ
σ
∼ N(0,1).

The distribution N(0,1) is called the standard normal distribution.
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Definition (Multivariate Normal Distribution)
The multivariate normal distribution on Rn with mean µ ∈ Rn and
covariance matrix Σ ∈ PD(n) is given by the p.d.f.

f (x) =

(
1√
2π

)n 1√
det Σ

exp

[
−1

2
(x − µ)′Σ−1(x − µ)

]
, for x ∈ Rn.

Denoted by N(µ,Σ).
If X ∼ N(µ,Σ), then E(X ) = µ, and cov(X ) = Σ, so these
parameters deserve their names.
The random variables X1, . . . ,Xn are jointly normal.
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Covariance and Independence

Definition
Two random variables X and Y with cov(X ,Y ) = 0 are said to be
uncorrelated.
In general, if X and Y are independent, then X and Y are
uncorrelated:

X and Y independent ⇒ cov(X ,Y ) = 0.

The converse is generally not true. There are examples of
uncorrelated random variables that are dependent.
For jointly normal random variables, independence is equivalent to
being uncorrelated.
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Proposition
Suppose Z1, . . . ,Zn are IID N(0,1) random variables.
Then Z = (Z1, . . . ,Zn)′ ∼ N(0, I).

Proposition
Suppose µ ∈ Rn and Σ is an n × n non-negative definite matrix.

Note that Σ has a non-negative definite square root Σ
1
2 .

Then X ∼ N(µ,Σ) iff there exists a random vector Z ∼ N(0, I),
such that

X = µ+ Σ
1
2 Z .
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Proposition
Let X ∼ N(µ,Σ), A ∈ Rm×n, and c,d ∈ Rn.

AX ∼ N(Aµ,AΣA′)

That is, AX has a multivariate normal distribution, and

E(AX ) = AE(X ) and cov(AX ) = Acov(X )A′.

The covariance between c′X and d ′X is

cov(c′X ,d ′X ) = c′Σd .

(Tarleton State University) Chapter 3 34 / 34


	Section 3.1: Introduction
	Section 3.2: Determinants and Inverses
	Section 3.3: Random Vectors
	Section 3.4: Positive Definite Matrices
	Section 3.5: The Normal Distribution

