Nonparametric Statistics Notes

Chapter 3: Some Tests Based on the Binomial Distribution

Jesse Crawford

Department of Mathematics
Tarleton State University

Quantiles

Definition

- Let X be a random variable and $0 \leq p \leq 1$.
- x_{p} is the quantile of order p of X if

$$
\begin{aligned}
& P\left(X<x_{p}\right) \leq p, \text { and } \\
& P\left(X>x_{p}\right) \leq 1-p .
\end{aligned}
$$

- If more than one number satisfies these conditions, let x_{p} be the midpoint of the interval of numbers satisfying these conditions.
- Also called the (100p)th percentile.

Notation

The pth quantile for the $N(0,1)$ distribution is z_{p}, so

$$
P\left(Z<z_{p}\right)=p, \text { and } P\left(Z>z_{p}\right)=1-p .
$$

Outline

(1) Section 3.1: The Binomial Test and Estimation of p

(2) Section 3.2: The Quantile Test and Estimation of x_{p}

(3) Section 3.4: The Sign Test
4. Section 3.5: Some Variations on the Sign Test

The Binomial Test

Example

- A machine manufactures parts.
- $p=$ probability that a part is defective
- Assume parts are statistically independent.
- Take a sample of $n=10$ parts.
- Sample contains 4 defective parts.
- Testing problem:

$$
\mathrm{H}_{0}: p \leq 0.05 \text { vs. } \mathrm{H}_{1}: p>0.05
$$

- Test statistic T
- Null distribution of T
- Decision rule/Critical region
- p-value
- Power
- Confidence intervals

The Binomial Test

Data and Assumptions

- n statistically independent trials
- Each trial results in "class 1" or "class 2"
- $p=P$ (class 1) for a single trial
- $O_{1}=$ number of observations in class 1

Hypothesis Tests

- $\mathrm{H}_{0}: p=p^{\star}$ vs. $\mathrm{H}_{1}: p \neq p^{\star}$
- $\mathrm{H}_{0}: p \geq p^{\star}$ vs. $\mathrm{H}_{1}: p<p^{\star}$
- $\mathrm{H}_{0}: p \leq p^{\star}$ vs. $\mathrm{H}_{1}: p>p^{\star}$
(Two-tailed)
(Lower-tailed)
(Upper-tailed)

Test Statistic and Null Distribution

- Test statistic: $T=O_{1}$
- Null distribution: $T \sim \operatorname{binomial}\left(n, p^{\star}\right)$

Upper-Tailed Binomial Test

$$
\mathrm{H}_{0}: p \leq p^{\star} \text { vs. } \mathrm{H}_{1}: p>p^{\star}
$$

- Test statistic: $T=O_{1}$
- Null distribution: $T \sim \operatorname{binomial}\left(n, p^{\star}\right)$
- Decision rule:

Choose t such that

$$
P\left(T \leq t \mid p=p^{\star}\right) \approx 1-\alpha,
$$

(Use Table A3 or a normal approximation) Reject H_{0} if $T>t$

- Critical region: $[T>t]$

- $\operatorname{binomial}(n=10, p=0.05)$
- Significance level $=P(T>2 \mid p=0.05)=1-0.9885=0.0115$

Upper-Tailed Binomial Test

$$
\mathrm{H}_{0}: p \leq p^{\star} \text { vs. } \mathrm{H}_{1}: p>p^{\star}
$$

- Test statistic: $T=O_{1}$
- Null distribution: $T \sim \operatorname{binomial}\left(n, p^{\star}\right)$
- Decision rule:

Choose t such that

$$
P\left(T \leq t \mid p=p^{\star}\right) \approx 1-\alpha,
$$

(Use Table A3 or a normal approximation) Reject H_{0} if $T>t$

- Critical region: $[T>t]$
- Given $T=t_{\text {obs }}$, the p-value is $P\left(T \geq t_{\text {obs }} \mid p=p^{\star}\right)$.

- $\operatorname{binomial}(n=10, p=0.05)$
- p-value $=P(T \geq 4 \mid p=0.05)=1-0.9990=0.0010$

Upper-Tailed Binomial Test

$$
\mathrm{H}_{0}: p \leq p^{\star} \text { vs. } \mathrm{H}_{1}: p>p^{\star}
$$

- Test statistic: $T=O_{1}$
- Null distribution: $T \sim \operatorname{binomial}\left(n, p^{\star}\right)$
- Decision rule:

Choose t such that

$$
P\left(T \leq t \mid p=p^{\star}\right) \approx 1-\alpha,
$$

(Use Table A3 or a normal approximation)
Reject H_{0} if $T>t$

- Critical region: $[T>t]$
- Given $T=t_{\text {obs }}$, the p-value is $P\left(T \geq t_{\text {obs }} \mid p=p^{\star}\right)$.
- For any value of p, the power is $P(T>t \mid p)$

- binomial $(n=10, p=0.3)$
- Power $=P(T>2 \mid p=0.3)=1-0.3828=0.6172$

- $\operatorname{binomial}(n=10, p=0.95)$
- Power $=P(T>2 \mid p=0.95)=1-0.0000=1.0000$

Example

- Normally, at least 50% of men undergoing a prostate cancer operation experience a certain side effect.
- New method for performing operation.
- Sample of 19 men.
- 3 experienced side effect.
- Is there statistically significant evidence that the new method has a lower chance of producing the side effect?

Lower-Tailed Binomial Test

$$
\mathrm{H}_{0}: p \geq p^{\star} \text { vs. } \mathrm{H}_{1}: p<p^{\star}
$$

- Test statistic: $T=O_{1}$
- Null distribution: $T \sim \operatorname{binomial}\left(n, p^{\star}\right)$
- Decision rule:

Choose t such that

$$
P\left(T \leq t \mid p=p^{\star}\right) \approx \alpha
$$

(Use Table A3 or a normal approximation) Reject H_{0} if $T \leq t$

- Critical region: $[T \leq t]$
- Given $T=t_{\mathrm{obs}}$, the p-value is $P\left(T \leq t_{\mathrm{obs}} \mid p=p^{\star}\right)$.
- For any value of p, the power is $P(T \leq t \mid p)$

Normal Approximation for Binomial Quantiles

- Suppose $X \sim \operatorname{binomial}(n, p)$.
- If $n p \geq 5$, and $n(1-p) \geq 5$, then the q th quantile of X is approximately

$$
x_{q} \approx n p+z_{q} \sqrt{n p(1-p)}
$$

Normal Approximation for p-values

$$
\begin{aligned}
& P\left(T \leq t_{\mathrm{obs}} \mid p=p^{\star}\right) \approx P\left(Z \leq \frac{t_{\mathrm{obs}}-n p^{\star}+0.5}{\sqrt{n p^{\star}\left(1-p^{\star}\right)}}\right) \\
& P\left(T \geq t_{\mathrm{obs}} \mid p=p^{\star}\right) \approx P\left(Z \geq \frac{t_{\mathrm{obs}}-n p^{\star}-0.5}{\sqrt{n p^{\star}\left(1-p^{\star}\right)}}\right)
\end{aligned}
$$

Two-Tailed Binomial Test

$$
\mathrm{H}_{0}: p=p^{\star} \text { vs. } \mathrm{H}_{1}: p \neq p^{\star}
$$

- Test statistic: $T=O_{1}$
- Null distribution: $T \sim \operatorname{binomial}\left(n, p^{\star}\right)$
- Decision rule:

Choose t_{1} and t_{2} such that

$$
\begin{aligned}
& P\left(T \leq t_{1} \mid p=p^{\star}\right) \approx \alpha / 2 \\
& P\left(T \leq t_{2} \mid p=p^{\star}\right) \approx 1-\alpha / 2
\end{aligned}
$$

(Use Table A3 or a normal approximation)
Reject H_{0} if $T \leq t_{1}$ or $T>t_{2}$

- Critical region: [$T \leq t_{1}$ or $T>t_{2}$]
- The p-value is $2 \cdot \min \left[P\left(T \leq t_{\text {obs }} \mid p^{\star}\right), P\left(T \geq t_{\text {obs }} \mid p^{\star}\right)\right]$.
- For any value of p, the power is $P\left(T \leq t_{1}\right.$ or $\left.T>t_{2} \mid p\right)$

Binomial Distribution: Confidence Interval for p

- Suppose Y ~ binomial (n, p)
- If $n \leq 30$ and the confidence level is $0.9,0.95$, or 0.99 , the exact Clopper Pearson confidence interval is given in table A4.
- If $n p \geq 5$ and $n(1-p) \geq 5$, we can use the normal approximation

$$
\frac{Y}{n} \pm z_{1-\alpha / 2} \sqrt{\frac{Y(n-Y)}{n^{3}}}
$$

Note that this is the same as

$$
\hat{p} \pm z_{1-\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}},
$$

where $\hat{p}=Y / n$.

Outline

(1) Section 3.1: The Binomial Test and Estimation of p
(2) Section 3.2: The Quantile Test and Estimation of x_{p}
(3) Section 3.4: The Sign Test
(4) Section 3.5: Some Variations on the Sign Test

The Quantile Test

Example

- Random sample of standardized test scores:

189	233	195	160	212
176	231	185	199	213
202	193	174	166	248

- Test whether the 75th percentile of the scores in the population is equal to 193.

$$
\mathrm{H}_{0}: x_{0.75}=193 \text { vs. } \mathrm{H}_{1}: x_{0.75} \neq 193 .
$$

Two-Tailed Quantile Test

- Assumption: X_{1}, \ldots, X_{p} is a random sample (they are IID) from a distribution whose measurement scale is at least ordinal.

$$
\mathrm{H}_{0}: x_{p^{\star}}=x^{\star} \text { vs. } \mathrm{H}_{1}: x_{p^{\star}} \neq x^{\star}
$$

- Test statistics:
$T_{1}=\#$ of X_{i} 's less than or equal to x^{\star}
$T_{2}=\#$ of X_{i} 's less than x^{\star}
- Null distributions for both T_{1} and $T_{2}: \operatorname{binomial}\left(n, p^{\star}\right)$
- Decision rule:

Let Y represent a binomial $\left(n, p^{\star}\right)$ random variable.
Choose t_{1} and t_{2} such that

$$
\begin{aligned}
& P\left(Y \leq t_{1}\right) \approx \alpha / 2 \\
& P\left(Y \leq t_{2}\right) \approx 1-\alpha / 2
\end{aligned}
$$

(Use Table A3 or a normal approximation)
Reject H_{0} if $T_{1} \leq t_{1}$ or $T_{2}>t_{2}$. Critical region: [$T_{1} \leq t_{1}$ or $T_{2}>t_{2}$]

Example

- Random sample of standardized test scores:

$$
\begin{array}{ccccc}
189 & 233 & 195 & 160 & 212 \\
176 & 231 & 185 & 199 & 213 \\
202 & 193 & 174 & 166 & 248 \\
\mathrm{H}_{0}: x_{0.75} & =193 \text { vs. } \mathrm{H}_{1}: x_{0.75} \neq 193 .
\end{array}
$$

- $T_{1}=\#$ of X_{i} 's less than or equal to X^{\star}
- $T_{2}=\#$ of X_{i} 's less than x^{\star}
- Choose t_{1} and t_{2} such that

$$
\begin{aligned}
& P\left(Y \leq t_{1}\right) \approx \alpha / 2 \\
& P\left(Y \leq t_{2}\right) \approx 1-\alpha / 2
\end{aligned}
$$

- Reject H_{0} if $T_{1} \leq t_{1}$ or $T_{2}>t_{2}$

Lower-Tailed Quantile Test

$$
\mathrm{H}_{0}: x_{p^{\star}} \leq x^{\star} \text { vs. } \mathrm{H}_{1}: x_{p^{\star}}>x^{\star}
$$

- Test statistic:
$T_{1}=\#$ of X_{i} 's less than or equal to x^{\star}
- Null distribution: $T_{1} \sim \operatorname{binomial}\left(n, p^{\star}\right)$
- Decision rule:

Let Y represent a binomial $\left(n, p^{\star}\right)$ random variable.
Choose t_{1} such that

$$
P\left(Y \leq t_{1}\right) \approx \alpha
$$

(Use Table A3 or a normal approximation) Reject H_{0} if $T_{1} \leq t_{1}$

- Critical region: $\left[T_{1} \leq t_{1}\right.$]

Upper-Tailed Quantile Test

$$
H_{0}: x_{p^{\star}} \geq x^{\star} \text { vs. } H_{1}: x_{p^{\star}}<x^{\star}
$$

- Test statistic:
$T_{2}=\#$ of X_{i} 's less than x^{\star}
- Null distribution: $T_{2} \sim \operatorname{binomial}\left(n, p^{\star}\right)$
- Decision rule:

Let Y represent a binomial $\left(n, p^{\star}\right)$ random variable.
Choose t_{2} such that

$$
P\left(Y \leq t_{2}\right) \approx 1-\alpha
$$

(Use Table A3 or a normal approximation)
Reject H_{0} if $T_{2}>t_{2}$

- Critical region: [$T_{2}>t_{2}$]

Outline

(1) Section 3.1: The Binomial Test and Estimation of p
(2) Section 3.2: The Quantile Test and Estimation of x_{p}
(3) Section 3.4: The Sign Test
(4) Section 3.5: Some Variations on the Sign Test

The Sign Test

Example

- 100 people tested two products.

15 people preferred product A to product B 4 people preferred product B to product A 81 people had no preference

- Summary:

15 +'s
4 -'s
81 ties

$$
\mathrm{H}_{0}: P(+)=P(-) \text { vs. } \mathrm{H}_{1}: P(+) \neq P(-)
$$

Two-Tailed Sign Test

$$
\mathrm{H}_{0}: P(+)=P(-) \text { vs. } \mathrm{H}_{1}: P(+) \neq P(-)
$$

- $n=[\#$ of + 's] $+[\#$ of - 's]
- Test statistic: $T=[\#$ of + 's]
- Null distribution: $T \sim \operatorname{binomial}\left(n, \frac{1}{2}\right)$
- Decision rule:

Let Y represent a binomial $\left(n, \frac{1}{2}\right)$ random variable.
Choose t_{1} and t_{2} such that

$$
\begin{aligned}
& P\left(Y \leq t_{1}\right) \approx \alpha / 2 \\
& P\left(Y \leq t_{2}\right) \approx 1-\alpha / 2
\end{aligned}
$$

(Use Table A3 or a normal approximation) Reject H_{0} if $T \leq t_{1}$ or $T>t_{2}$

- Critical region: [$T \leq t_{1}$ or $T>t_{2}$]

Outline

(1) Section 3.1: The Binomial Test and Estimation of p
(2) Section 3.2: The Quantile Test and Estimation of x_{p}
(3) Section 3.4: The Sign Test
(4) Section 3.5: Some Variations on the Sign Test

The McNemar Test for Significance of Changes

Example

- Presidential Debate
- Summary of voter intentions

After

- Test whether a statistically significant difference in voter intentions exists before and after the debate.

Cox-Stuart Test for Trend

Example

- Precipitation readings for 19 years:

45.2	45.8	41.7	36.2	45.3	52.2	35.3	57.1	35.3	57.1
41.0	33.7	45.7	37.9	41.7	36.0	49.8	36.2	39.9	

- Test whether a trend in this data exists.

