Nonparametric Statistics Notes Chapter 3: Some Tests Based on the Binomial Distribution

Jesse Crawford

Department of Mathematics Tarleton State University

Quantiles

Definition

- Let X be a random variable and $0 \le p \le 1$.
- x_p is the quantile of order p of X if

 $P(X < x_p) \le p$, and $P(X > x_p) \le 1 - p$.

- If more than one number satisfies these conditions, let x_p be the midpoint of the interval of numbers satisfying these conditions.
- Also called the (100*p*)th percentile.

Notation

The *p*th quantile for the N(0, 1) distribution is z_p , so

$$P(Z < z_p) = p$$
, and $P(Z > z_p) = 1 - p$.

Section 3.1: The Binomial Test and Estimation of *p*

- 2 Section 3.2: The Quantile Test and Estimation of x_p
- 3 Section 3.4: The Sign Test
- 4 Section 3.5: Some Variations on the Sign Test

The Binomial Test

Example

- A machine manufactures parts.
- *p* = probability that a part is defective
- Assume parts are statistically independent.
- Take a sample of n = 10 parts.
- Sample contains 4 defective parts.
- Testing problem:

 $H_0: p \le 0.05 \text{ vs. } H_1: p > 0.05.$

• Test statistic T	• <i>p</i> -value
 Null distribution of T 	• Power
 Decision rule/Critical region 	 Confidence intervals

The Binomial Test

Data and Assumptions

- n statistically independent trials
- Each trial results in "class 1" or "class 2"
- p = P(class 1) for a single trial
- O_1 = number of observations in class 1

Hypothesis Tests

•
$$H_0: p = p^*$$
 vs. $H_1: p \neq p^*$

•
$$H_0: p \ge p^*$$
 vs. $H_1: p < p^*$ (Lowe

• $H_0: p \le p^*$ vs. $H_1: p > p^*$

(Two-tailed) (Lower-tailed)

(Upper-tailed)

Test Statistic and Null Distribution

- Test statistic: $T = O_1$
- Null distribution: *T* ~ binomial(*n*, *p*^{*})

Upper-Tailed Binomial Test

 $H_0: p \le p^* \text{ vs. } H_1: p > p^*$

- Test statistic: $T = O_1$
- Null distribution: *T* ~ binomial(*n*, *p*^{*})
- Decision rule:
 - Choose t such that

 $P(T \leq t \mid p = p^{\star}) \approx 1 - \alpha,$

(Use Table A3 or a normal approximation) Reject H₀ if T > t

• Critical region: [T > t]

- binomial(n = 10, p = 0.05)
- Significance level = P(T > 2 | p = 0.05) = 1 0.9885 = 0.0115

Upper-Tailed Binomial Test

$$H_0: p \le p^* \text{ vs. } H_1: p > p^*$$

- Test statistic: $T = O_1$
- Null distribution: *T* ~ binomial(*n*, *p*^{*})
- Decision rule:
 - Choose t such that

$$P(T \leq t \mid \boldsymbol{p} = \boldsymbol{p}^{\star}) \approx 1 - \alpha,$$

(Use Table A3 or a normal approximation) Reject H₀ if T > t

- Critical region: [T > t]
- Given $T = t_{obs}$, the *p*-value is $P(T \ge t_{obs} | p = p^*)$.

• binomial(n = 10, p = 0.05)

• p-value = $P(T \ge 4 \mid p = 0.05) = 1 - 0.9990 = 0.0010$

Upper-Tailed Binomial Test

$$H_0: p \le p^*$$
 vs. $H_1: p > p^*$

- Test statistic: $T = O_1$
- Null distribution: *T* ~ binomial(*n*, *p*^{*})
- Decision rule:
 - Choose t such that

$$P(T \leq t \mid \boldsymbol{p} = \boldsymbol{p}^{\star}) \approx 1 - \alpha,$$

(Use Table A3 or a normal approximation) Reject H_0 if T > t

- Critical region: [T > t]
- Given $T = t_{obs}$, the *p*-value is $P(T \ge t_{obs} | p = p^*)$.
- For any value of p, the power is P(T > t | p)

• binomial(*n* = 10, *p* = 0.3)

• Power = P(T > 2 | p = 0.3) = 1 - 0.3828 = 0.6172

• binomial(n = 10, p = 0.95)

• Power = P(T > 2 | p = 0.95) = 1 - 0.0000 = 1.0000

Example

- Normally, at least 50% of men undergoing a prostate cancer operation experience a certain side effect.
- New method for performing operation.
- Sample of 19 men.
- 3 experienced side effect.
- Is there statistically significant evidence that the new method has a lower chance of producing the side effect?

Lower-Tailed Binomial Test

$$H_0: p \ge p^* \text{ vs. } H_1: p < p^*$$

- Test statistic: $T = O_1$
- Null distribution: *T* ~ binomial(*n*, *p*^{*})
- Decision rule:
 - Choose t such that

$$P(T \leq t \mid p = p^{\star}) \approx \alpha,$$

(Use Table A3 or a normal approximation)

- Reject H_0 if $T \le t$
- Critical region: $[T \leq t]$
- Given $T = t_{obs}$, the *p*-value is $P(T \le t_{obs} | p = p^*)$.
- For any value of p, the power is $P(T \le t | p)$

Normal Approximation for Binomial Quantiles

- Suppose X ~ binomial(n, p).
- If np ≥ 5, and n(1 − p) ≥ 5, then the qth quantile of X is approximately

$$x_q pprox np + z_q \sqrt{np(1-p)}$$

Normal Approximation for *p*-values

$$egin{aligned} & P(T \leq t_{ ext{obs}} \mid p = p^{\star}) pprox P\left(Z \leq rac{t_{ ext{obs}} - np^{\star} + 0.5}{\sqrt{np^{\star}(1 - p^{\star})}}
ight) \ & P(T \geq t_{ ext{obs}} \mid p = p^{\star}) pprox P\left(Z \geq rac{t_{ ext{obs}} - np^{\star} - 0.5}{\sqrt{np^{\star}(1 - p^{\star})}}
ight) \end{aligned}$$

Two-Tailed Binomial Test

$$H_0: p = p^* \text{ vs. } H_1: p \neq p^*$$

- Test statistic: $T = O_1$
- Null distribution: T ~ binomial(n, p^{*})
- Decision rule:
 - Choose t_1 and t_2 such that

$$P(T \le t_1 \mid p = p^*) \approx \alpha/2$$

$$P(T \le t_2 \mid p = p^*) \approx 1 - \alpha/2$$

(Use Table A3 or a normal approximation) Reject H₀ if $T \le t_1$ or $T > t_2$

- Critical region: $[T \le t_1 \text{ or } T > t_2]$
- The *p*-value is $2 \cdot \min[P(T \le t_{obs} \mid p^*), P(T \ge t_{obs} \mid p^*)]$.
- For any value of p, the power is $P(T \le t_1 \text{ or } T > t_2 \mid p)$

Binomial Distribution: Confidence Interval for p

- Suppose Y ~ binomial(n, p)
- If n ≤ 30 and the confidence level is 0.9, 0.95, or 0.99, the exact Clopper Pearson confidence interval is given in table A4.
- If $np \ge 5$ and $n(1 p) \ge 5$, we can use the normal approximation

$$rac{Y}{n} \pm z_{1-lpha/2} \sqrt{rac{Y(n-Y)}{n^3}}$$

Note that this is the same as

$$\hat{p} \pm z_{1-lpha/2} \sqrt{rac{\hat{p}(1-\hat{p})}{n}},$$

where $\hat{p} = Y/n$.

Section 3.1: The Binomial Test and Estimation of p

2 Section 3.2: The Quantile Test and Estimation of x_p

3 Section 3.4: The Sign Test

4 Section 3.5: Some Variations on the Sign Test

Example

• Random sample of standardized test scores:

189	233	195	160	212
176	231	185	199	213
202	193	174	166	248

 Test whether the 75th percentile of the scores in the population is equal to 193.

 $H_0: x_{0.75} = 193 \text{ vs. } H_1: x_{0.75} \neq 193.$

Two-Tailed Quantile Test

Assumption: X₁,..., X_p is a random sample (they are IID) from a distribution whose measurement scale is at least ordinal.

$$H_0: x_{p^*} = x^* \text{ vs. } H_1: x_{p^*} \neq x^*$$

- Test statistics:
 - $T_1 = #$ of X_i 's less than or equal to x^*
 - $T_2 = #$ of X_i 's less than x^*
- Null distributions for both T₁ and T₂: binomial(n, p^{*})
- Decision rule:
 - Let Y represent a binomial (n, p^*) random variable.
 - Choose t₁ and t₂ such that

$$P(Y \le t_1) pprox lpha/2$$

 $P(Y \le t_2) pprox 1 - lpha/2$

(Use Table A3 or a normal approximation) Reject H₀ if $T_1 \le t_1$ or $T_2 > t_2$. Critical region: $[T_1 \le t_1 \text{ or } T_2 > t_2]$

Example

• Random sample of standardized test scores:

189233195160212176231185199213202193174166248

 $H_0: x_{0.75} = 193 \text{ vs. } H_1: x_{0.75} \neq 193.$

- $T_1 = #$ of X_i 's less than or equal to x^*
- $T_2 = #$ of X_i 's less than x^*
- Choose t₁ and t₂ such that

 $P(Y \le t_1) \approx \alpha/2$ $P(Y \le t_2) \approx 1 - \alpha/2$

• Reject H₀ if $T_1 \le t_1$ or $T_2 > t_2$

Lower-Tailed Quantile Test

$$H_0: x_{p^*} \le x^* \text{ vs. } H_1: x_{p^*} > x^*$$

Test statistic:

 $T_1 = #$ of X_i 's less than or equal to x^*

- Null distribution: $T_1 \sim \text{binomial}(n, p^*)$
- Decision rule:
 - Let Y represent a binomial (n, p^*) random variable.
 - Choose t₁ such that

$$P(Y \leq t_1) \approx \alpha$$

(Use Table A3 or a normal approximation) Reject H_0 if $T_1 \le t_1$

• Critical region: $[T_1 \leq t_1]$

Upper-Tailed Quantile Test

$$H_0: x_{\rho^*} \ge x^* \text{ vs. } H_1: x_{\rho^*} < x^*$$

Test statistic:

 $T_2 = #$ of X_i 's less than x^*

- Null distribution: $T_2 \sim \text{binomial}(n, p^*)$
- Decision rule:
 - Let Y represent a binomial (n, p^*) random variable.
 - Choose t₂ such that

$$P(Y \leq t_2) \approx 1 - \alpha$$

(Use Table A3 or a normal approximation) Reject H_0 if $T_2 > t_2$

• Critical region: $[T_2 > t_2]$

Section 3.1: The Binomial Test and Estimation of p

2 Section 3.2: The Quantile Test and Estimation of x_p

3 Section 3.4: The Sign Test

4 Section 3.5: Some Variations on the Sign Test

Example

- 100 people tested two products.
 - 15 people preferred product A to product B
 - 4 people preferred product B to product A
 - 81 people had no preference
- Summary:
 - ► 15 +'s
 - ▶ 4 –'s
 - 81 ties

$$H_0: P(+) = P(-)$$
 vs. $H_1: P(+) \neq P(-)$

Two-Tailed Sign Test

$$H_0: P(+) = P(-)$$
 vs. $H_1: P(+) \neq P(-)$

- *n* = [# of + 's] + [# of 's]
- Test statistic: T = [# of + 's]
- Null distribution: $T \sim \text{binomial}(n, \frac{1}{2})$
- Decision rule:
 - Let Y represent a binomial $(n, \frac{1}{2})$ random variable.
 - Choose t₁ and t₂ such that

$$P(Y \le t_1) \approx \alpha/2$$
$$P(Y \le t_2) \approx 1 - \alpha/2$$

(Use Table A3 or a normal approximation) Reject H₀ if $T \le t_1$ or $T > t_2$

• Critical region: $[T \le t_1 \text{ or } T > t_2]$

Section 3.1: The Binomial Test and Estimation of p

- 2 Section 3.2: The Quantile Test and Estimation of x_p
- 3 Section 3.4: The Sign Test

The McNemar Test for Significance of Changes

Example

- Presidential Debate
- Summary of voter intentions

After

		Democrat	Republican
Before	Democrat	63	21
	Republican	4	12

• Test whether a statistically significant difference in voter intentions exists before and after the debate.

Cox-Stuart Test for Trend

Example

• Precipitation readings for 19 years:

45.2	45.8	41.7	36.2	45.3	52.2	35.3	57.1	35.3	57.1
41.0	33.7	45.7	37.9	41.7	36.0	49.8	36.2	39.9	

• Test whether a trend in this data exists.

(Tarleton State University)