Nonparametric Statistics Notes

Chapter 4: Contingency Tables

Jesse Crawford

Department of Mathematics
Tarleton State University

Definition

- Let Z_{1}, \ldots, Z_{k} be IID $N(0,1)$ random variables.
- $Y=Z_{1}^{2}+\cdots+Z_{k}^{2}$ has a chi-squared distribution with k degrees of freedom.
- $Y \sim \chi^{2}(k)$

Outline

(1) Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
(2) Section 4.3: The Median Test
(3) Section 4.4: Measures of Dependence
4. Section 4.5: Chi-squared Goodness-of-Fit Tests
(5) Section 4.6: Cochran's Q-Test for Related Observations

Testing for Differences in Probabilities (2×2 case)

Testing for Differences in Probabilities (2×2 case)

- Assumptions:

The random samples are statistically independent.
$p_{1}=P($ Class 1) in Population 1
$p_{2}=P($ Class 1$)$ in Population 2
Row totals are fixed. Column totals are random.

- Testing problems:

$$
\begin{array}{ll}
\mathrm{H}_{0}: p_{1}=p_{2} \text { vs. } \mathrm{H}_{1}: p_{1} \neq p_{2} & \text { (Two-tailed) } \\
\mathrm{H}_{0}: p_{1} \geq p_{2} \text { vs. } \mathrm{H}_{1}: p_{1}<p_{2} & \text { (Lower-tailed) } \\
\mathrm{H}_{0}: p_{1} \leq p_{2} \text { vs. } \mathrm{H}_{1}: p_{1}>p_{2} & \text { (Upper-tailed) }
\end{array}
$$

Testing for Differences in Probabilities (2×2 case)

- Test statistic:

$$
T=\frac{\sqrt{N}\left(O_{11} O_{22}-O_{12} O_{21}\right)}{\sqrt{n_{1} n_{2} C_{1} C_{2}}}
$$

- Null distribution: $T \approx N(0,1)$
- p-values:

$$
\begin{gathered}
2 \cdot \min \left[P\left(Z \leq t_{\mathrm{obs}}\right), P\left(Z \geq t_{\mathrm{obs}}\right)\right] \quad \text { (Two-tailed) } \\
P\left(Z \leq t_{\mathrm{obs}}\right) \quad(\text { Lower-tailed }) \\
P\left(Z \geq t_{\mathrm{obs}}\right) \quad \text { (Upper-tailed) }
\end{gathered}
$$

Testing for Differences in Probabilities (2×2 case)

	Class 1	Class 2	Total
Population 1	O_{11}	O_{12}	n_{1}
Population 2	O_{21}	O_{22}	n_{2}
Total	C_{1}	C_{2}	$N=n_{1}+n_{2}$

- Expected cell frequencies under H_{0} :

$$
E_{i j}=\frac{n_{i} C_{j}}{N}
$$

- Chi-squared Statistic:

$$
\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=\left[\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{O_{i j}^{2}}{E_{i j}}\right]-N
$$

Testing for Differences in Probabilities (2×2 case)

	Class 1	Class 2	Total
Population 1	O_{11}	O_{12}	n_{1}
Population 2	O_{21}	O_{22}	n_{2}
Total	C_{1}	C_{2}	$N=n_{1}+n_{2}$

- Chi-squared Statistic:

$$
\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=\left[\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{O_{i j}^{2}}{E_{i j}}\right]-N
$$

- Null distribution: $\chi^{2} \approx \chi^{2}(1) \quad$ (Degrees of freedom $=1$)
- p-value: $P\left(\chi^{2} \geq \chi_{\text {obs }}^{2}\right)$ (Two-tailed test only)

When is the Chi-squared Distribution a Good Approximation?

- Cochran's Criterion: The approximation may be poor if
- Any $E_{i j}$ is less than 1 , or
- more than 20% of the $E_{i j}$'s are less than 5
- Conover's Criterion: The approximation may be poor if
- Any $E_{i j}$ is less than 0.5 , or
- more than 50% of the $E_{i j}$'s are less than 1

Testing for Differences in Probabilities ($r \times c$ case)

Testing for Differences in Probabilities ($r \times c$ case)
Class 1 Class 2 ... Class c Total

Population 1	O_{11}	O_{12}	\cdots	O_{10}	n_{1}
Population 2	O_{21}	O_{22}	\ldots	$\mathrm{O}_{2 \mathrm{c}}$	n_{2}
\vdotsPopulation r	:	:	\because	:	
	$O_{r 1}$	$\mathrm{O}_{\mathrm{r} 2}$	\cdots	$O_{r c}$	n_{r}
Total	C_{1}	C_{2}		C_{c}	N

- Assumptions:

The random samples are statistically independent.

$$
p_{i j}=P(\text { Class } j) \text { in Population } i
$$

Row totals are fixed. Column totals are random.

- Two-tailed Testing problem:
H_{0} : All probabilities in the same column are equal to each other

$$
\left(p_{1 j}=p_{2 j}=\cdots=p_{r j}, \text { for all } j\right)
$$

Testing for Differences in Probabilities ($r \times c$ case)

	Class	Class		Class	Total
Population 1 Population 2	O_{11}	O_{12}	\ldots	$\mathrm{O}_{1 c}$	
	O_{21}	O_{22}	\ldots	$\mathrm{O}_{2 c}$	n_{2}
:	\vdots	\vdots	\because	:	
Population r	$O_{r 1}$	$O_{r 2}$	\ldots	$O_{r c}$	n_{r}
Total	C_{1}	C_{2}		C_{c}	N

- $E_{i j}=\frac{n_{i} C_{j}}{N}$
- Chi-squared Statistic:

$$
\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=\left[\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{O_{i j}^{2}}{E_{i j}}\right]-N
$$

- Null distribution: $\chi^{2} \approx \chi^{2}[(r-1)(c-1)]$
- p-value: $P\left(\chi^{2} \geq \chi_{\text {obs }}^{2}\right)$ (Two-tailed test only)

Example

- Website visitors were shown three different website layouts.
- 100 were shown layout 1
- 50 were shown layout 2
- 200 were shown layout 3
- Time spent browsing was also recorded.

	$T \leq 5$		$5<T \leq 10$	$10 \leq T<15$
Layout 1 $15 \leq T$				
	55	27	11	7
Layout 2	16	23	6	5
Layout 3	40	71	22	17

- Test the null hypothesis that the probability distribution of time spent browsing is the same for the different layouts.
- Note: Row totals are fixed, and column totals are random.

Testing for Independence ($r \times c$ case)

	Column 1		Column 2	\cdots	Column c
Row 1					
	O_{11}	O_{12}	\cdots	$O_{1 c}$	R_{1}
Row 2	O_{21}	O_{22}	\cdots	$O_{2 c}$	R_{2}
	\vdots	\vdots	\ddots	\vdots	\vdots
Row r	$O_{r 1}$	$O_{r 2}$	\cdots	$O_{r c}$	R_{r}
Total	C_{1}	C_{2}	\cdots	C_{c}	N

- Assumptions:

Random sample of N observations.
Each observation is a member of exactly one of the r rows and one of the c columns.
Both the row and column totals are random.

- Two-tailed Testing problem:
$\mathrm{H}_{0}: P($ row i, column $j)=P($ row $i) \cdot P($ column $j)$, for all i, j.
- Testing procedure is the same as the previous test.

Chi-squared Test with Fixed Marginal Totals.

	Column 1	Column 2	...	Column c	Total
Row 1	O_{11}	O_{12}	\cdots	$\mathrm{O}_{1 c}$	n_{1}
Row 2	O_{21}	O_{22}	\cdots	$\mathrm{O}_{2 \mathrm{c}}$	n_{2}
:	\vdots	\vdots	\ddots.	\vdots	:
Row r	$O_{r 1}$	$O_{r 2}$	\cdots	$O_{r c}$	n_{r}
Total	c_{1}	C_{2}		c_{c}	N

- Assumptions:

Both the row and column totals are fixed.
The data were randomly selected from all contingency tables with those row and column totals.

- Chi-squared testing procedure is the same as the previous tests.

May perform poorly because row and column totals are both fixed. Need alternative methods.

Chi-squared Test with Fixed Marginal Totals.

	Column 1		Column 2	\cdots	Column c
Total					
Row 1	O_{11}	O_{12}	\cdots	$O_{1 c}$	n_{1}
Row 2	O_{21}	O_{22}	\cdots	$O_{2 c}$	n_{2}
	\vdots	\vdots	\vdots	\ddots	\vdots
\vdots					
Row r n	$O_{r 1}$	$O_{r 2}$	\cdots	$O_{r c}$	n_{r}
Total	c_{1}	c_{2}	\cdots	c_{c}	N

Alternatives to chi-squared test:

- 2×2 case:

Fisher's exact test.
Uses hypergeometric distribution to calculate exact p-value.
fisher.test(A)

- $r \times c$ case:

Simulate p-value.

```
chisq.test(A,simulate.p.value=TRUE)
```


Outline

(1) Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
(2) Section 4.3: The Median Test
(3) Section 4.4: Measures of Dependence
(4) Section 4.5: Chi-squared Goodness-of-Fit Tests
(5) Section 4.6: Cochran's Q-Test for Related Observations

The Median Test

- Setting: Several independent random samples.
- Testing problem:
H_{0} :All populations have the same median vs.
H_{1} :At least two have different medians.
- Testing procedure:

Grand Median = Median of all samples combined.

Sample	1	2		c	Totals
> Grand Median	O_{11}	O_{12}		O_{10}	
\leq Grand Median	O_{21}	O_{22}		$\mathrm{O}_{2 \mathrm{c}}$	b
Totals	n_{1}	n_{2}		n_{c}	

Perform a chi-squared test.

Sample	1	2		c	Totals a
> Grand Median	O_{11}	O_{12}	\cdots	$\mathrm{O}_{1 \mathrm{c}}$	
\leq Grand Median	O_{21}	O_{22}	\ldots	$\mathrm{O}_{2 \mathrm{c}}$	b
Totals	n_{1}	n_{2}		n_{c}	N

Example

- Corn yields for four different methods of growing corn:
- Method 1: 83, 89, 89, 90, 91, 91, 92, 94, 96
- Method 2: 81, 83, 83, 84, 84, 88, 89, 90, 91, 91
- Method 3: 91, 93, 94, 95, 96, 100, 101
- Method 4: 77, 78, 79, 80, 81, 81, 81, 82
- Test whether the medians for these different methods are equal.

Outline

(1) Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
(2) Section 4.3: The Median Test
(3) Section 4.4: Measures of Dependence

4) Section 4.5: Chi-squared Goodness-of-Fit Tests

(5) Section 4.6: Cochran's Q-Test for Related Observations

Cramer's Contingency Coefficient

- Let $T=\chi^{2}$ be the chi-squared statistic from an $r \times c$ contingency table.
- $N=$ number of total observations in table.
- Let $q=\min (r, c)$
- The largest possible value of T is $N(q-1)$

Definition

$$
R_{1}=\frac{T}{N(q-1)}
$$

Cramer's Contingency Coefficient $=\sqrt{R_{1}}$

Definition

$$
R_{1}=\frac{T}{N(q-1)}
$$

Cramer's Contingency Coefficient $=\sqrt{R_{1}}$

Interpretation of Cramer's Coefficient

$0 \leq$ Cramer's Contingency Coefficient ≤ 1.

- A value of 1 suggests complete dependence.
- A value of 0 suggests complete independence.
- The p-value of a chi-squared test of independence is a more reliable measure.

Outline

(1) Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
(2) Section 4.3: The Median Test
(3) Section 4.4: Measures of Dependence

4 Section 4.5: Chi-squared Goodness-of-Fit Tests
(5) Section 4.6: Cochran's Q-Test for Related Observations

Chi-squared Goodness-of-Fit Tests

- One random sample.
- Each observation is either in Class 1, Class 2, ..., or Class c.

Class	1	2		C	Total
Observed Frequencies	O_{1}	O_{2}	\ldots	O_{C}	N

- $p_{j}=P($ Class $j)$
- $p_{j}^{\star}=P($ Class $j)$, under the null hypothesis
- $E_{j}=p_{j}^{\star} N$

$$
\chi^{2}=\left[\sum_{j=1}^{c} \frac{O_{j}^{2}}{E_{j}}\right]-N
$$

- χ^{2} has a chi-squared distribution.
- Degrees of freedom $=\operatorname{dim}\left(\mathrm{H}_{1}\right)-\operatorname{dim}\left(\mathrm{H}_{0}\right)$

Outline

(1) Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
(2) Section 4.3: The Median Test
(3) Section 4.4: Measures of Dependence
4. Section 4.5: Chi-squared Goodness-of-Fit Tests
(5) Section 4.6: Cochran's Q-Test for Related Observations

Example

- 12 basketball games
- 3 basketball fans make predictions
- 1 = correct prediction
- $0=$ incorrect prediction

Game	Fan 1	Fan 2	Fan 3	Totals
1	1	1	1	3
2	1	1	1	3
3	0	1	0	1
4	1	1	0	2
\vdots	\vdots	\vdots	\vdots	\vdots
11	1	1	1	3
12	1	1	1	3
Totals	8	10	7	25

- Is there a statistically significant difference in the accuracy of the three fans predictions?

Cochran's Q-Test for Related Observations

	Treatments				
Subjects	1	2	\cdots	c	Row Totals
1	X_{11}	X_{12}	\cdots	$X_{1 c}$	R_{1}
2	X_{21}	X_{22}	\cdots	$X_{2 c}$	R_{2}
\vdots	\vdots	\vdots		\vdots	\vdots
r	$X_{r 1}$	$X_{r 2}$	\cdots	$X_{r c}$	R_{r}
Column Totals	C_{1}	C_{2}	\cdots	C_{c}	N

- Subjects are a large random sample from the population.
- $X_{i j}$ is either 1 or 0 .
- $p_{i j}=P\left(X_{i j}=1\right)$
- Testing problem:
H_{0} : For each row $i, p_{i 1}=p_{i 2}=\cdots=p_{i c}$
H_{0} : For every subject, all treatments are equally effective for that subject.

Cochran's Q-Test for Related Observations

	Treatments				
Subjects	1	2	\cdots	c	Row Totals
1	X_{11}	X_{12}	\cdots	$X_{1 c}$	R_{1}
2	X_{21}	X_{22}	\cdots	$X_{2 c}$	R_{2}
\vdots	\vdots	\vdots		\vdots	\vdots
r	$X_{r 1}$	$X_{r 2}$	\cdots	$X_{r c}$	R_{r}
Column Totals	C_{1}	C_{2}	\cdots	C_{c}	N

- $p_{i j}=P\left(X_{i j}=1\right)$
- H_{0} : For each row $i, p_{i 1}=p_{i 2}=\cdots=p_{i c}$

$$
Q=c(c-1) \frac{\sum_{j=1}^{c}\left(C_{j}-\frac{N}{c}\right)^{2}}{\sum_{i=1}^{r} R_{i}\left(c-R_{i}\right)}
$$

- Null distribution: $T \sim \chi^{2}(c-1)$.

Cochran's Q-Test with Two Treatments

- If there are only two treatments, Cochran's Q-test is equivalent to the McNemar test.

$>$ cbind(game.prediction,fan,block) game. prediction fan block			
[1,]	1	1	1
[2,]	1	2	1
[3,]	1	3	1
[4,]	1	1	2
[5,]	1	2	2
[6,]	1	3	2
[7,]	0	1	3
[8,]	1	2	3
[9,]	0	3	3
[10,]	1	1	4
[11,]	1	2	4
[12,]	0	3	4
[13,]	0	1	5
[14,]	0	2	5
[15,]	0	3	5
[16,]	1	1	6
[17,]	1	2	6
[18,]	1	3	6
[19,]	1	1	7
[20,]	1	2	7
[21,]	1	3	7
[22,]	1	1	8
[23,]	1	2	8
[24,]	0	3	8
[25,]	0	1	9
[26,]	0	2	9
[27,]	1	3	9
[28,]	0	1	10
[29,]	1	2	10
[30,]	0	3	10
[31,]	1	1	11
[32,]	1	2	11
[33,]	1	3	11
[34,]	1	1	12
[35,]	1	2	12
[36,]	1	3	12

