Nonparametric Statistics Notes Chapter 4: Contingency Tables

Jesse Crawford

Department of Mathematics Tarleton State University

Definition

- Let Z_1, \ldots, Z_k be IID N(0, 1) random variables.
- $Y = Z_1^2 + \cdots + Z_k^2$ has a *chi-squared* distribution with k degrees of freedom.
- $Y \sim \chi^2(k)$

Outline

- Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
- Section 4.3: The Median Test
- Section 4.4: Measures of Dependence
- Section 4.5: Chi-squared Goodness-of-Fit Tests
- 5 Section 4.6: Cochran's Q-Test for Related Observations

Testing for Differences in Probabilities $(2 \times 2 \text{ case})$

Testing for Differences in Probabilities (2×2 case)

	Class 1	Class 2	Total
Population 1	O ₁₁	O ₁₂	n_1
Population 2	<i>O</i> ₂₁	O ₂₂	n_2
Total	C ₁	C_2	$N = n_1 + n_2$

Assumptions:

- The random samples are statistically independent.
- $p_1 = P(\text{Class 1})$ in Population 1
- $p_2 = P(\text{Class 1})$ in Population 2
- Row totals are fixed. Column totals are random.

Testing problems:

- $H_0: p_1 = p_2 \text{ vs. } H_1: p_1 \neq p_2$ (Two-tailed)
- $H_0: p_1 > p_2 \text{ vs. } H_1: p_1 < p_2$ (Lower-tailed)
- (Upper-tailed) $H_0: p_1 < p_2 \text{ vs. } H_1: p_1 > p_2$

Testing for Differences in Probabilities (2×2 case)

	Class 1	Class 2	Total
Population 1	O ₁₁	O ₁₂	n_1
Population 2	O ₂₁	O ₂₂	n_2
Total	C_1	C_2	$N=n_1+n_2$

Test statistic:

$$T = \frac{\sqrt{N}(O_{11}O_{22} - O_{12}O_{21})}{\sqrt{n_1n_2C_1C_2}}$$

- Null distribution: $T \approx N(0, 1)$
- p-values:

$$2 \cdot \min[P(Z \le t_{
m obs}), P(Z \ge t_{
m obs})]$$
 (Two-tailed)
$$P(Z \le t_{
m obs})$$
 (Lower-tailed)
$$P(Z \ge t_{
m obs})$$
 (Upper-tailed)

Testing for Differences in Probabilities (2 \times 2 case)

	Class 1	Class 2	Total
Population 1	O ₁₁	O ₁₂	n_1
Population 2	O ₂₁	O ₂₂	n_2
Total	<i>C</i> ₁	C_2	$N=n_1+n_2$

Expected cell frequencies under H₀:

$$E_{ij} = \frac{n_i C_j}{N}$$

Chi-squared Statistic:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = \left[\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{O_{ij}^{2}}{E_{ij}} \right] - N$$

Testing for Differences in Probabilities (2×2 case)

Population 1
$$O_{11}$$
 O_{12} O_{12} O_{13} O_{14} O_{15} O_{15}

Chi-squared Statistic:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = \left[\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{O_{ij}^{2}}{E_{ij}} \right] - N$$

- Null distribution: $\chi^2 \approx \chi^2(1)$ (Degrees of freedom = 1)
- p-value: $P(\chi^2 \ge \chi^2_{\text{obs}})$ (Two-tailed test only)

When is the Chi-squared Distribution a Good Approximation?

- Cochran's Criterion: The approximation may be poor if
 - ▶ Any Eii is less than 1, or
 - ▶ more than 20% of the E_{ii} 's are less than 5
- Conover's Criterion: The approximation may be poor if
 - Any E_{ij} is less than 0.5, or
 - ▶ more than 50% of the E_{ij}'s are less than 1

Testing for Differences in Probabilities ($r \times c$ case)

Testing for Differences in Probabilities ($r \times c$ case)

	Class 1	Class 2	• • •	Class c	Total
Population 1	O ₁₁	O ₁₂		O _{1c}	n_1
Population 2	O ₂₁	O ₂₂		O_{2c}	n_2
:	:	:	٠	:	:
Population r	O _{r1}	O _{r2}		O _{rc}	n _r
Total	<i>C</i> ₁	C_2		C_c	Ν

Assumptions:

- The random samples are statistically independent.
- $p_{ij} = P(\text{Class } j) \text{ in Population } i$
- Row totals are fixed. Column totals are random.
- Two-tailed Testing problem:

 $H_0:$ All probabilities in the same column are equal to each other

$$(p_{1j}=p_{2j}=\cdots=p_{rj}, \text{ for all } j)$$

Testing for Differences in Probabilities ($r \times c$ case)

	Class 1	Class 2		Class c	Total
Population 1	O ₁₁	O ₁₂		O _{1c}	n_1
Population 2	O ₂₁	O ₂₂		O_{2c}	n_2
:	:	:	٠	:	:
Population r	O _{r1}	O _{r2}		O _{rc}	n _r
Total	C_1	C_2		C_c	N

•
$$E_{ij} = \frac{n_i C_j}{N}$$

• Chi-squared Statistic:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = \left[\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{O_{ij}^{2}}{E_{ij}} \right] - N$$

- Null distribution: $\chi^2 \approx \chi^2[(r-1)(c-1)]$
- p-value: $P(\chi^2 \ge \chi^2_{\text{obs}})$ (Two-tailed test only)

Example

- Website visitors were shown three different website layouts.
- 100 were shown layout 1
- 50 were shown layout 2
- 200 were shown layout 3
- Time spent browsing was also recorded.

	<i>T</i> ≤ 5	$5 < T \le 10$	$10 \le T < 15$	15 ≤ <i>T</i>
Layout 1	55	27	11	7
Layout 2	16	23	6	5
Layout 3	40	71	22	17

- Test the null hypothesis that the probability distribution of time spent browsing is the same for the different layouts.
- Note: Row totals are fixed, and column totals are random.

Testing for Independence ($r \times c$ case)

	Column 1	Column 2		Column c	Total
Row 1	O ₁₁	O ₁₂		O _{1c}	R_1
Row 2	O ₂₁	O ₂₂		O _{2c}	R_2
:	:	:	٠	:	i
Row r	O_{r1}	O _{r2}		Orc	R_r
Total _.	<i>C</i> ₁	C_2		C_c	N

- Assumptions:
 - Random sample of N observations.
 - Each observation is a member of exactly one of the *r* rows and one of the *c* columns.
 - Both the row and column totals are random.
- Two-tailed Testing problem:

$$H_0: P(\text{row } i, \text{column } j) = P(\text{row } i) \cdot P(\text{column } j), \text{ for all } i, j.$$

Testing procedure is the same as the previous test.

Chi-squared Test with Fixed Marginal Totals.

	Column 1	Column 2		Column c	Total
Row 1	O ₁₁	O ₁₂		O _{1c}	n_1
Row 2	O ₂₁	O ₂₂		O_{2c}	n_2
:	:	:	٠	:	:
Row r	O_{r1}	O _{r2}		O _{rc}	n _r
Total	C ₁	<i>c</i> ₂		C _C	Ν

Assumptions:

- Both the row and column totals are fixed.
- The data were randomly selected from all contingency tables with those row and column totals.
- Chi-squared testing procedure is the same as the previous tests.
 - May perform poorly because row and column totals are both fixed.
 - Need alternative methods.

Chi-squared Test with Fixed Marginal Totals.

	Column 1	Column 2		Column c	Total
Row 1	O ₁₁	O ₁₂		O _{1c}	n_1
Row 2	O ₂₁	O ₂₂		O_{2c}	n_2
:	:	:	٠	:	÷
Row r	O_{r1}	O _{r2}		O _{rc}	n _r
Total	C ₁	<i>c</i> ₂		c_c	N

Alternatives to chi-squared test:

- 2 × 2 case:
 - Fisher's exact test.
 - Uses hypergeometric distribution to calculate exact p-value.
 - fisher.test(A)
- r × c case:
 - Simulate p-value.
 - chisq.test(A, simulate.p.value=TRUE)

Outline

- Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
- Section 4.3: The Median Test
- Section 4.4: Measures of Dependence
- Section 4.5: Chi-squared Goodness-of-Fit Tests
- Section 4.6: Cochran's Q-Test for Related Observations

The Median Test

- Setting: Several independent random samples.
- Testing problem:

 H_0 : All populations have the same median vs.

H₁ :At least two have different medians.

- Testing procedure:
 - Grand Median = Median of all samples combined.

Sample	1	2		С	Totals
> Grand Median	O ₁₁	<i>O</i> ₁₂	• • •	<i>O</i> _{1<i>c</i>}	а
\leq Grand Median	O ₂₁	O ₂₂	• • •	O_{2c}	b
Totals	n_1	n_2		n_c	Ν

Perform a chi-squared test.

Sample	1	2		С	Totals
> Grand Median	O ₁₁				а
\leq Grand Median	<i>O</i> ₂₁	O ₂₂		O_{2c}	b
Totals	$\overline{n_1}$	n_2	• • •	n_c	Ν

Example

- Corn yields for four different methods of growing corn:
- Method 1: 83, 89, 89, 90, 91, 91, 92, 94, 96
- Method 2: 81, 83, 83, 84, 84, 88, 89, 90, 91, 91
- Method 3: 91, 93, 94, 95, 96, 100, 101
- Method 4: 77, 78, 79, 80, 81, 81, 81, 82
- Test whether the medians for these different methods are equal.

Outline

- Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
- Section 4.3: The Median Test
- Section 4.4: Measures of Dependence
- Section 4.5: Chi-squared Goodness-of-Fit Tests
- Section 4.6: Cochran's Q-Test for Related Observations

Cramer's Contingency Coefficient

- Let $T = \chi^2$ be the chi-squared statistic from an $r \times c$ contingency table.
- *N* = number of total observations in table.
- Let $q = \min(r, c)$
- The largest possible value of T is N(q-1)

Definition

$$R_1 = \frac{T}{N(q-1)}$$

Cramer's Contingency Coefficient = $\sqrt{R_1}$

Definition

$$R_1 = \frac{T}{N(q-1)}$$

Cramer's Contingency Coefficient = $\sqrt{R_1}$

Interpretation of Cramer's Coefficient

 $0 \le Cramer's Contingency Coefficient \le 1$.

- A value of 1 suggests complete dependence.
- A value of 0 suggests complete independence.
- The p-value of a chi-squared test of independence is a more reliable measure.

Outline

- Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
- Section 4.3: The Median Test
- Section 4.4: Measures of Dependence
- Section 4.5: Chi-squared Goodness-of-Fit Tests
- 5 Section 4.6: Cochran's Q-Test for Related Observations

Chi-squared Goodness-of-Fit Tests

- One random sample.
- Each observation is either in Class 1, Class 2, ..., or Class *c*.

- $p_j = P(\text{Class } j)$
- $p_i^* = P(\text{Class } j)$, under the null hypothesis
- $E_j = p_i^* N$

$$\chi^2 = \left[\sum_{j=1}^c \frac{O_j^2}{E_j}\right] - N$$

- χ^2 has a chi-squared distribution.
- Degrees of freedom = $dim(H_1) dim(H_0)$

Outline

- Sections 4.1 and 4.2: Chi-squared Tests for Contingency Tables
- Section 4.3: The Median Test
- Section 4.4: Measures of Dependence
- 4 Section 4.5: Chi-squared Goodness-of-Fit Tests
- 5 Section 4.6: Cochran's Q-Test for Related Observations

Example

- 12 basketball games
- 3 basketball fans make predictions
- 1 = correct prediction
- 0 = incorrect prediction

Game	Fan 1	Fan 2	Fan 3	Totals
1	1	1	1	3
2	1	1	1	3
3	0	1	0	1
4	1	1	0	2
:	:	:	:	:
11	1	1	1	3
12	1	1	1	3
Totals	8	10	7	25

 Is there a statistically significant difference in the accuracy of the three fans predictions?

Cochran's Q-Test for Related Observations

	Treatments				
Subjects	1	2		С	Row Totals
1	<i>X</i> ₁₁	<i>X</i> ₁₂		X _{1c}	R ₁
2	X ₂₁	X ₂₂		X _{2c}	R_2
:	:	:		:	i i
r	X_{r1}	X_{r2}		X_{rc}	R_r
Column Totals	C_1	C_2		C_c	N

- Subjects are a large random sample from the population.
- X_{ij} is either 1 or 0.
- $p_{ij} = P(X_{ij} = 1)$
- Testing problem:

 H_0 : For each row i, $p_{i1} = p_{i2} = \cdots = p_{ic}$

H₀: For every subject, all treatments are equally effective for that subject.

Cochran's Q-Test for Related Observations

	Treatments				
Subjects	1	2		С	Row Totals
1	<i>X</i> ₁₁	<i>X</i> ₁₂		<i>X</i> _{1<i>c</i>}	R_1
2	<i>X</i> ₂₁	X ₂₂		X_{2c}	R_2
i i	:	:		:	i i
r	X_{r1}	X_{r2}		X _{rc}	R_r
Column Totals	C_1	C_2		C_c	N

- $p_{ij} = P(X_{ij} = 1)$
- H_0 : For each row i, $p_{i1} = p_{i2} = \cdots = p_{ic}$

$$Q = c(c-1) \frac{\sum_{j=1}^{c} (C_j - \frac{N}{c})^2}{\sum_{i=1}^{r} R_i(c - R_i)}$$

• Null distribution: $T \sim \chi^2(c-1)$.

Cochran's Q-Test with Two Treatments

• If there are only two treatments, Cochran's *Q*-test is equivalent to the McNemar test.

library(RVAideMemoire)	> cbind(game.prediction,fan,block) game.prediction fan block				
<pre>library(RVAideMemoire) game.prediction=c(1,1,1,</pre>			an b 1 2 3	1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8	
I	[23,]	1	1 2 3 1 2 3 1 2 3	8 8 9 9 9 10 10	
	[31,] [32,] [33,] [34,] [35,] [36,]	1 1 1 1 1	1 2 3 1 2 3	11 11 11 12 12	