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Sets and Elements

Definition
@ A setis a collection of mathematical objects, called the elements
of the set.
@ x € Ameans that x is an element of the set A.
@ x ¢ Ameans that x is not an element of the set A.

Example

o LetA={1,2,3}
1A
2c A
3cA
7€A

@ The order that elements are listed in a set doesn’t matter.

{4,8,9,15} = {8,15,4,9}
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Example

Sets can contain infinitely many elements. If the set exhibits an obvious
pattern, it may be sufficient to simply list a few elements of the set.

o Let A={5,10,15,...}
25 A
28 ¢ A
Sets can also be defined with set builder notation.
o letB={x|4<x<9}
6eB
10¢ B
Here is common notation used for certain important sets of numbers.

o N={1,23,...} (Set of Natural Numbers)

e Z={...,—2,—1,0,1,2,...} (Set of Integers)

© Q={%|abcZb+# 0} (Set of Rational Numbers)
@ R (Set of Real Numbers)

@ C (Set of Complex Numbers
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Interval Notation

@ (a,b)={xeRla<x < b}
@ [abl={xeRla<x < b}
@ [ab)={xeRla<x < b}
@ (a,b] ={xeRla<x < b}
@ (a,00) ={xeRla< x}

@ [a,00) ={x e Rla< x}
@ (—o0,b) = {x € R|x < b}
@ (—oo, bl ={x e R|x < b}

@ (—o0o0,00) =R
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Unions

Definition
Given two sets A and B, the union of A and B is

AUB={x|xecAorx e B}.

Note: In mathematical logic, “or” means “and/or”, so “x € Aor x € B’
means x € A or x € B or both.

Example
o IfA={1,2,3,4,5} and B={3,4,5,6,7}, then

AUB={1,2,3,4,56,7}.
@ If A=[0,8) and B = (6, 10], then

AUB = [0,10].
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Intersections

Definition
Given two sets A and B, the intersection of A and B is

ANB={x|xeAandx € B}.

Example
e IfA=1{1,2,3,4,5} and B = {3,4,5,6,7}, then

ANB={3,4,5}.
e If A=[0,8) and B = (6,10], then

AN B=(6,8).
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Universal Sets and Complements

Definition
@ In most situations, there is a universal set U that contains all
elements under consideration.

@ The complement of a set Ais

A={xeU|x¢gA}

Example
o If U={1,2,3,4,56,7,8,9,10} and A= {1,2,3}, then

A ={4,56,7,8,9,10}.
o IfU=Rand A=5,8), then

A = (—00,5)U[8, 00).
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Set Difference

Definition
Given two sets A and B,

A\B={xcAl|x¢B)}.

Example
e IfA={1,2,3,4,5} and B = {3,4,5,6,7}, then

A\ B={1,2}.
e If A=1[0,8) and B = (6,10], then

A\ B =[0,8].

Note that complements are just a special case of set difference, since

A={xeU|x¢A =U\A
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Subsets and the Empty Set

Definition
Ais a subset of B, written A C B, if every element of A is an element of
B.

v

Example
e IfA={1,2,3}and B={1,2,3,4,5},then AC B.

e IfA={1,2,3},and B={1,2,8,9},then AZ B, because 3 € A
but 3 ¢ B.

Definition
The empty set is the set () = {} that contains no elements.

@ Forany set A

» AUD=A » ACA
» AND =10 » AC U, where U is the
» P CA universal set.
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Families of Sets

Definition
@ A family F of sets is simply a set whose elements are also sets.
@ The union of all sets in the family is

J A={x|x € A forsome A c F}.
AcF

@ The intersection of all sets in the family is

[JA={x|xeAforal Ac F}.
AeF

Example
If ¥ = {[—x,x] | x > 0}, evaluate the following

JAand () A

AcF AceF
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Definition
@ If A;is a set, for every i € /, then

o
JAi ={x|x € A forsome i e I}.
iel
(A ={x|xecA,forallicl}
i€l

@ The variable i is called the index, and I is the index set. When the
index setis I = {1,2,3,...}, we can write

U A; and ﬂ A;.
i=1 i=1

Example
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The Power Set of a Set

Definition
@ Let U be a set.
@ The power set of U, denoted P(U), is the set of all subsets of U.

PU)={AlAC U}

@ Note that
A C Uifandonly if A€ P(U).
F is a family of subsets of U if and only if 7 C P(U).

Example
If U={1,2,3}, then
o P(U)={0.{1},{2},{3},{1,2},{1,3},{2,3}, U}.
e {1,3} C U,so0{1,3} € P(U).
o If F={{x} | x e U} ={{1},{2},{3}}, then F C P(U).
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Cartesian Products and Functions

Definition
Given two sets U and V, the cartesian product of U and V is the
following set of ordered pairs:

UxV={(u,v)|lueUandve V}.

Definition
A function f from U to V is a subset of U x V, such that for any u € U,
there exists a unique v € V, such that (u, v) € f.

@ Functions are often called maps or mappings.

@ U and V are the domain and codomain of f, respectively.

@ To indicate that f is a function from U to V, we write f : U — V.

@ If (u,v) € f, we write f(u) = v.
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Images and Inverse Images

Definition
Letf: U — V,andlet AC Uand BC V.

@ The image of A under fis
f(A) = {f(x) | x € A}.
@ The inverse image of B under f is
f~1(B) = {x € U| f(x) € B}.
@ The image or range of fis f(U) = {f(x) | x € U}.

Example
Define f : R — R by f(x) = x2. Then
@ f([0,5]) = [0,25] @ The range of f is [0, 00).

e ~1([0,25]) = [-5,5]
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Injective and Surjective Functions

Definition
Let f: U— Vthen
@ fis injective (also called one-to-one) if for all uq, u» € U,

f(uy) = f(up) implies uy = uo.

@ fis surjective (also called onto) if f(U) = V, that is,

forany v € V, there exists u € U, such that f(u) = v.

@ A function that is both injective and surjective is called bijective.

Example
Give examples of injective and surjective functions.
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Countable and Uncountable Sets

Definition
@ A set Ais countably infinite if there is a bijection between A and
the set of natural numbers N.
@ A set Ais countable if it is finite or countably infinite.
@ A setis uncountable if it is not countable.

The following are equivalent:
@ Ais countable
@ There exists an injective function f: A — N
@ There exists a surjective function f : N — A.

Example

Which of the following sets are countable?
{0,1,2,...,10},N,Z,Q,R,C
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e Brief Overview of Measure Theory
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c-algebras

Definition
@ Suppose Q is a set and F is a family of subsets of 2.

@ Then F is called a o-algebra (or o-field) if the following conditions
hold:

QeF
A€ Fimplies A € F
A1,A2,...€]~'impliesA1 UA U--- e F.

@ Elements of F are called measurable sets.
@ (Q,F) is called a measurable space.

Example

Show that a o-algebra always has these two properties also:
e heF
@ Ay,As, ... € Fimplies AinAN--- € F.
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c-algebras

Definition
@ Suppose Q2 is a set and F is a family of subsets of Q2.

@ Then F is called a o-algebra (or o-field) if the following conditions
hold:

QeF
A€ Fimplies A € F
A1, Ao,... € Fimplies AfUAU--- € F.

@ Elements of F are called measurable sets.
@ (Q,F) is called a measurable space.

Example
@ Let Q be any set.
@ Prove that P(Q2), the power set of Q, is a o-algebra.
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c-algebras

Definition
@ Suppose Q2 is a set and F is a family of subsets of 2.

@ Then F is called a o-algebra (or o-field) if the following conditions
hold:

Qe F
Aec Fimplies A € F
A, Az, ... € Fimplies AiUA U --- € F.

@ Elements of F are called measurable sets.
@ (Q,F) is called a measurable space.

Example

@ Let Q = R. There exits a o-algebra B, called the Borel o-algebra,
such that (a, b) € B, for all a,b € R.

@ Prove that [a,b] € B, {a} € B, and (a,x) € B, for all a,b € R.
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Pairwise Disjoint Sets

Definition
If An B =0, then A and B are disjoint.

Definition
@ A family of sets A;, i € I is called pairwise disjoint if

ANA =0,ifi #].
@ Also called mutually exclusive.
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Measures

Definition
@ Suppose (2, F) is a measurable space.
@ A function i : F — [0, 0] is called a measure on (£, F) if

(@) =0
For any sequence of pairwise disjoint sets Ay, Az, ... € F,

p (U Ai> = uA).
i=1 i=1

@ If uis a measure on (£, F), then (2, F, u) is called a measure
space.

Example
@ Let (Q, F, ) be a measure space, and let A, B € F.
o If AC B, prove u(A) < u(B).
@ If AC B, and u(B) < oo, prove that (B \ A) = u(B) — u(A).

(Tarleton State University) Ch 1 and 2: Preliminaries



@ A function p : F — [0, 0] is called a measure on (Q2, F) if

n(@) =0
For any sequence of pairwise disjoint sets Ay, Az, ... € F,

1 (U Ai> = uA).
] p

Example

@ Let (2, F) = (R, B). There exists a measure p on this space
called Lebesgue measure, such that

u((a, b)) = b— a, for all real numbers a < b.

@ For all real numbers a < b, prove the following:

n({at) =0 11((0, 00)) = oo
w([a, b)) =b—a u(R) =
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Measurable Functions

Definition
@ Let (©4,F7) and (2, F») be two measurable spaces.
@ A function f: Qq — Q5 is measurable if

f~1(A) e Fy, forany A e F».

Example
@ Let (Q1,./—"1) = (R,B), and let (Qg,fg) = (Z,P(Z)).

@ Define f: R — Z by f(x) = | x|, the greatest integer less than or
equal to x.

@ Prove that f is measurable.
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© Probability Theory
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Probability Measures

Definition
@ A probability space is a measure space (S, F, P), such that
P(S) =1.
@ Sis the sample space or observation space.
@ P s called a probability measure.
@ Aset Ac Fis called an event.
@ P(A) is the probability of the event A.

P@)=0
P(S) =1
Forall A,B e F
If A C B, then P(A) < P(B).
0 < P(A) < 1
P(A) =1 - P(A)
P(AuB) = P(A)+ P(B) — P(An B)
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Probability Measures

Definition
@ A probability space is a measure space (S, F, P), such that
P(S) =1.
@ Sis the sample space or observation space.
@ Pis called a probability measure.
@ Aset Ac Fiscalled an event.
@ P(A) is the probability of the event A.

Example
e §={1,2,83,...}
e F=P(S)

@ Assume P({s})=275,forallse S
@ Find these probabilities:

P({1,2})
P({3,4,5,...})
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Discrete Probability Distributions

Definition
@ Suppose (S,P(S), P) is a probability space.
@ If Sis a countable set, then P is a discrete probability measure.
@ Pis completely determined by the function

f:S—[0,1]
f(s) = P({s})-

@ Forany AC S,
P(A) =) f(s).

SEA

@ fis called the probability mass function (p.m.f.) or probability
distribution function (p.d.f.) of P.

@ Note that
0<f(s)<1,forallse S
>sesf(s)=1.
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Random Variables

Definition
@ Let (S, F, P) be a probability space.
@ A random variable is a measurable function
X:S—>R.
@ (R is equipped with the Borel o-algebra B.)

Example

X:S—R
ifs=TTT
if s {HTT, THT, TTH}
if s e {HHT,HTH, THH}
if s = HHH

w NN = O

(Tarleton State University) Ch 1 and 2: Preliminaries



The Distribution of a Random Variable

Notation
If X: S — Risarandom variable,

[XeAl={se S| X(s) € A}

Definition
@ Suppose (S, F, P) is a probability space.
@ Let X : S — R be arandom variable.
@ Then there is a corresponding probability space (R, 3, Px), where

Px(A) = P[X € Al = P[X~"(A)], forall A € B.

@ Py is the probability distribution of X.
@ It’s often just called the distribution of X.
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Support of a Random Variable

Definition
If X : S — R is arandom variable, the support of X is the set of all
possible values of X:

supp(X) = {X(s) | s € S} = X(S).

Definition
@ Arandom variable X is discrete if supp(X) is countable.

@ If X is discrete, the distribution of X is completely determined by
the function

f:R—[0,1]
f(x) = Px({x}) = P[X = x].

@ fis called the probability mass function (p.m.f.) or probability
distribution function (p.d.f.) of X.
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Discrete Random Variables

Definition
@ A random variable X is discrete if supp(X) is countable.

@ If X is discrete, the distribution of X is completely determined by
the function

f:R—[0,1]
f(x) = Px({x}) = P[X = x].

@ fis called the probability mass function (p.m.f.) or probability
distribution function (p.d.f.) of X.

@ Note that
0<f(x)<1,forall xeR
Y oxer f(X) = 1.
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Expected Value and Variance of a Random Variable

Definition
@ Let X be a discrete random variable with p.m.f. f.
@ The expected value of X is

p=px=EX)=>_ xf(x).

XER

@ Given any function u: R — R,

E[u(X)] =) u(x)f(x)

XeR

@ The variance of X is
0? = 0% = Var(X) = E[(X — px)?] = E(X?) — E(X)*.

@ The standard deviation of X is 0 = ox = /Var(X).
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Figure: Binomial distribution with n =100 and p = 0.2.
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Moment Generating Function of a Random Variable

Definition
@ Let X be a random variable.
@ Assume there exists h > 0, such that

M(t) = E[e] converges, for —h <t < h.

@ Then M is called the moment-generating function (m.g.f.) of X.

@ If the above expected value does not exists on some interval
(—h, h), then the m.g.f. does not exist.

If X is a random variable, and its m.g.f. exists, then

E(X") = M(0),forany r = 1,2, ...
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Cumulative Distribution Function of a Random Variable

Definition
@ The cumulative distribution function (c.d.f.) of the random variable
X is
F:R—[0,1]
F(x) = P[X < x].

@ Also called the distribution function.
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@ Let X be a discrete random variable.
@ The distribution or probability distribution of X is the probability

measure
Px : B — [0,1]
Px(A) = P[X € A]
@ The probability mass function (p.m.f.) or probability distribution
function (p.d.f.) of X is
f:R —[0,1]
f(x) = P[X = x]
@ The cumulative distribution function (c.d.f.) or distribution function
(d.f.) of the random variable X is
F:R—[0,1]
F(x) = P[X < x].
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Identically Distributed Random Variables

Definition
@ Let X and Y be two random variables.
@ Then X and Y have the same distribution if

Px = Py

@ We say that X and Y are identically distributed.

Given two discrete random variables X and Y, the following are
equivalent:

@ X and Y are identically distributed, Px = Py
@ X and Y have the same p.m.f., fy = fy

@ X and Y have the same c.d.f., Fx = Fy

@ X and Y have the same m.g.f., My = My
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Continuous Random Variables

Definition
@ Let X be a random variable, and suppose there is a function

f:R —[0,00)

such that, for any real numbers a < b,
b
P(a< X < b) :/ f(x) dx.
a

@ Then the distribution of X is continuous, and f is the probability
density function (p.d.f.).

@ Forany Ae B,
P(XeA) = / f(x) dx.
A

0<f(x),forallx e R
J75 f(x) ax = 1.
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Discrete vs. Continuous Random Variables

@ Discrete @ Continuous

@ fis the probability mass @ fis the probability density
function (p.m.f.) function (p.d.f.)

@ > rf(x)=1 o [of(x)dx=1

@ P(XecA) =3 caf(x) @ P(X e A)= [,f(x)dx

® E[u(X)] = 2xer u(x)f(x) ® E[u(X)] = [ u(x)f(x) dx
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Given two continuous random variables X and Y, the following are
equivalent:

@ X and Y are identically distributed, Px = Py
@ The p.d.f’s of X and Y are equal almost everywhere,

p({x [ fx(x) # fy(x)}) = 0.

@ X and Y have the same c.d.f., Fx = Fy
@ X and Y have the same m.g.f., My = My
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e The Hypergeometric, Binomial, and Normal Distributions
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@ Consider a set of n objects.
@ The number of different subsets of size r is

Example
How many five card poker hands are there?

Example
How many distinct permutations are there of the letters

AAAAAAAFFF
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The Hypergeometric Distribution

Example
@ A car dealership has 20 cars: 12 Fords and 8 Chevrolets.
@ 5 cars are selected at random without replacement.
@ What’s the probability of selecting exactly 3 Fords?

Hypergeometric Distribution
@ N; = number of objects of type 1
@ N, = number of objects of type 2
@ Random sample without replacement.
@ n = sample size.
@ X = number of objects in sample of type 1

M=)
P(X:x):f(x):ﬁ,forxgn,ng,n—ngg.
n
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Independent Events

Definition
Two events A and B are statistically independent if

P(AN B) = P(A)P(B).

Example
© S={HHH,HHT ,HTH,HTT, THH, THT, TTH, TTT}
@ All outcomes are equilikely.
® A= {HHH,HHT,HTH, HTT} (First coin is heads)
@ B={HHH,HHT, THH, THT} (Second coin is heads)
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Independence of Multiple Events

Definition
A family of events {A; | i € I}, is statistically independent if

F)(A,.1 Mooo mAik) = P(A,1) "P(Aik)7

for any subfamily of events {A;,..., A, }.
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Independent Random Variables

Definition
Two random variables X and Y are statistically independent if

P(Xe€Aand Y € B)=P(X € A)P(Y € B),forall A,Be B
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The Binomial Distribution

Example
@ A football player kicks 10 field goals.
@ Chance of making each field goal is 80%.
@ The field goals are statistically independent.
@ Find the probability of making exactly 7 of the field goals.

Binomial Distribution
@ Sequence of ntrials
@ Each trial has only two possible outcomes, “success” and “failure”
@ p = probability of “success” on a single trial
@ Trials are statistically independent
@ X = number of “successes” that actually occur

P(X = x) = f(x) = <)’(’)pX(1 —p)" X, forx=0,1,....n.
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Example
Find the probability of making between 6 and 9 field goals inclusive? }
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The Normal Distribution

Definition
@ Suppose 1 € R, and 2 > 0.
@ The normal distribution with mean p and variance o2, is given by

)2
exp{—(x D) }, —00 < X < 00.

f(x) =

202

1
Veno
Notation: N(u, o?)

0.004

0.003 / \

\
0.0z / \

0.001 / \

s o L L L L e
300 400 500 GO0 ] &/00

Figure: Normal distribution with ;o = 500 and ¢ = 100.
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Standard Normal Distribution

Definition

The distribution N(u = 0,02 = 1) is the standard normal distribution.

v

Standardizing a Normal Random Variable
If X ~ N(u,c?), then

7= X1 No,1).
g
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The Central Limit Theorem

Theorem (5.6-1)
@ Suppose Xi, Xo, ... is a sequence of IID random variables,
@ from a distribution with finite mean p
@ and finite positive variance o°.
o LetX =11 X,forn=12,...
@ Then, as n — oo,

X—p _ il Xi—nu
= &i= N(0,1).
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Informal Statement of CLT

Informal CLT
@ Suppose Xj, ..., X, is a random sample
@ from a distribution with finite mean p
@ and finite positive variance 2.
@ Then, if nis sufficiently large,

X ~ N(u,0?/n), and

n
ZX,- ~ N(nu, no?).
i=1
@ Conventionally, values of n > 30 are usually considered
sufficiently large, although this text applies the approximation for
lower values of n, such as n > 20.
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Normal Approximation to the Binomial Distribution
If np > 5 and n(1 — p) > 5, then

b(n, p) ~ N(u = np,o® = np(1 — p)).
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e Statistical Inference
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The t-distribution

Definition
@ Let r be a positive integer.
@ The t-distribution with r degrees of freedom is given by
r((r+1)/2) 1

f(t) = VAT(r/2) O F B —00 < t < o0.

@ Asr — oo, t(r) = N(0,1).

Dotted line - N(0,1)
distribution
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Test Statistics for the Normal Distribution

Proposition

@ Consider a random sample X, ..., X, from a N(y, o) population.
@ Xi,...,Xpare lID, and X; ~ N(u, o?), for all i.
° —

X—p

Z=—— ~N(0,1).

apvn~ N
o —

X—p

== = ~Hn-1
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Critical Values for Normal and t-distributions

Definition
@ LetZ~ N(O,1)and T ~ t(r).
@ Leta e (0,1).
@ We define z, and t,(r) as follows:

PlZ > z,] = «a.

P[T > t,(r)] = «a.

o Zo/2 ta 2(30)
0.10 | 1.645 | 1.697
0.05| 1.96 2.042
0.01 | 2575 | 2.750
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A Hypothesis Testing Example

Example

@ Assume that packages of M&M'’s have a N(, o?) distribution.

@ A sample of 31 packages of M&M'’s had sample mean X = 235.1
grams and sample standard deviation S = 5.7 grams.

@ Perform the following hypothesis test at the o = 0.05 significance
level

Ho : p=232.5vs. Hy : u # 232.5.
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Hypothesis Test: Mean of a Normal Distribution

@ Let Xq,..., X, ~ N(u,o?) be arandom sample.
@ For the testing problem

Ho : u = po vs. Hy = # po,

@ the test statistic is

_ X —mo
S/vn

@ The null distribution of T is
T~tn—-1).

@ The decision rule is

Reject Hy, if | T| > ,/2(n—1)
Do not reject H,, otherwise.

@ The critical regionis C = {t c R | [t| > t,/2(n—1)}.
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Hypothesis Testing Terminology

Definition
@ A statistic is any variable computed based on a sample of data.
@ A test statistic is a statistic used to perform a hypothesis test.

@ The null distribution of a test statistic is its distribution under the
assumption that Hg is true.

@ The critical region or rejection region of a test is the set of all
values of the test statistic that result in rejecting Hg.
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Two Types of Errors
@ Type | error: Rejecting Hp when it is true.
@ Type Il error: Not rejecting Hp when it is false.

Your Decision Based
On a Random Sample

Given the Null Hypothesis Is

True False
) Typel Correct
Reject Error Decision
DoNol  Correct Type II
Reject Decision Error

Two Types of Errors in Decision Making

@ The significance level of a test is

a = max{P(type | error) | Hp is true}.

(Tarleton State University)
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Given the Null Hypothesis Is

True False
) Typel Correct
Reject Error Decision
Your Decision Based
©On a Random Sample DoNot  Correct Type II
Reject Decision Error

Two Types of Errors in Decision Making

@ The significance level of a test is

a = max{P(type | error) | Hg is true}
= max{P(rejecting Hy) | Ho is true}
=max{P(T € C) | Hp is true}
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p-values

Definition
@ The p-value is the smallest significance level at which the null
hypothesis would be rejected for a given observation.
@ Also called the observed significance level.

@ It is the probability of all values more extreme than T under the
null distribution.

@ The smaller the p-value is, the stronger the evidence is against
Ho.

(Tarleton State University) Ch 1 and 2: Preliminaries 65/67



Confidence Intervals

Definition
A 1 — a confidence interval for a parameter 6 is a random interval
[L, U], such that

PL<O<U)=1-aqa.

@ Let Xy,..., X, ~ N(u,0?) be a random sample.
@ A 1 — «a confidence interval for u is

— S - S
X — — X+t o—
/2 \mv + a/Z\m
@ Also written as S
X+t

W
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Hypothesis Testing Conclusions

@ Rejecting Hy means there is strong evidence that Hy is false.

@ Not rejecting Hy merely means there is a lack of strong evidence
against Hg.
There is not strong evidence in favor of anything, including Hp.
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