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Sets and Elements

Definition
A set is a collection of mathematical objects, called the elements
of the set.
x ∈ A means that x is an element of the set A.
x 6∈ A means that x is not an element of the set A.

Example
Let A = {1,2,3}

I 1 ∈ A
I 2 ∈ A
I 3 ∈ A
I 7 6∈ A

The order that elements are listed in a set doesn’t matter.

{4,8,9,15} = {8,15,4,9}
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Example
Sets can contain infinitely many elements. If the set exhibits an obvious
pattern, it may be sufficient to simply list a few elements of the set.

Let A = {5,10,15, . . .}
I 25 ∈ A
I 28 6∈ A

Sets can also be defined with set builder notation.

Let B = {x | 4 ≤ x ≤ 9}
I 6 ∈ B
I 10 6∈ B

Here is common notation used for certain important sets of numbers.

N = {1,2,3, . . .} (Set of Natural Numbers)
Z = {. . . ,−2,−1,0,1,2, . . .} (Set of Integers)
Q = {a

b | a,b ∈ Z,b 6= 0} (Set of Rational Numbers)
R (Set of Real Numbers)
C (Set of Complex Numbers)

(Tarleton State University) Ch 1 and 2: Preliminaries 4 / 67



Interval Notation

(a,b) = {x ∈ R|a < x < b}
[a,b] = {x ∈ R|a ≤ x ≤ b}
[a,b) = {x ∈ R|a ≤ x < b}
(a,b] = {x ∈ R|a < x ≤ b}
(a,∞) = {x ∈ R|a < x}

[a,∞) = {x ∈ R|a ≤ x}

(−∞,b) = {x ∈ R|x < b}

(−∞,b] = {x ∈ R|x ≤ b}

(−∞,∞) = R
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Unions

Definition
Given two sets A and B, the union of A and B is

A ∪ B = {x | x ∈ A or x ∈ B}.

Note: In mathematical logic, “or” means “and/or”, so “x ∈ A or x ∈ B”
means x ∈ A or x ∈ B or both.

Example
If A = {1,2,3,4,5} and B = {3,4,5,6,7}, then

A ∪ B = {1,2,3,4,5,6,7}.

If A = [0,8) and B = (6,10], then

A ∪ B = [0,10].
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Intersections

Definition
Given two sets A and B, the intersection of A and B is

A ∩ B = {x | x ∈ A and x ∈ B}.

Example
If A = {1,2,3,4,5} and B = {3,4,5,6,7}, then

A ∩ B = {3,4,5}.

If A = [0,8) and B = (6,10], then

A ∩ B = (6,8).
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Universal Sets and Complements

Definition
In most situations, there is a universal set U that contains all
elements under consideration.
The complement of a set A is

A′ = {x ∈ U | x 6∈ A}.

Example
If U = {1,2,3,4,5,6,7,8,9,10} and A = {1,2,3}, then

A′ = {4,5,6,7,8,9,10}.

If U = R and A = [5,8), then

A′ = (−∞,5) ∪ [8,∞).
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Set Difference

Definition
Given two sets A and B,

A \ B = {x ∈ A | x 6∈ B}.

Example
If A = {1,2,3,4,5} and B = {3,4,5,6,7}, then

A \ B = {1,2}.

If A = [0,8) and B = (6,10], then

A \ B = [0,6].

Note that complements are just a special case of set difference, since

A′ = {x ∈ U | x 6∈ A} = U \ A.
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Subsets and the Empty Set

Definition
A is a subset of B, written A ⊆ B, if every element of A is an element of
B.

Example
If A = {1,2,3} and B = {1,2,3,4,5}, then A ⊆ B.
If A = {1,2,3}, and B = {1,2,8,9}, then A 6⊆ B, because 3 ∈ A
but 3 6∈ B.

Definition
The empty set is the set ∅ = {} that contains no elements.

For any set A
I A ∪ ∅ = A
I A ∩ ∅ = ∅
I ∅ ⊆ A

I A ⊆ A
I A ⊆ U, where U is the

universal set.
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Families of Sets

Definition
A family F of sets is simply a set whose elements are also sets.
The union of all sets in the family is⋃

A∈F
A = {x | x ∈ A, for some A ∈ F}.

The intersection of all sets in the family is⋂
A∈F

A = {x | x ∈ A, for all A ∈ F}.

Example
If F = {[−x , x ] | x > 0}, evaluate the following⋃

A∈F
A and

⋂
A∈F

A.
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Definition
If Ai is a set, for every i ∈ I, then⋃

i∈I

Ai = {x | x ∈ Ai , for some i ∈ I}.

⋂
i∈I

Ai = {x | x ∈ Ai , for all i ∈ I}.

The variable i is called the index, and I is the index set. When the
index set is I = {1,2,3, . . .}, we can write

∞⋃
i=1

Ai and
∞⋂

i=1

Ai .

Example
∞⋂

i=1

(0,5 + 1
i )
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The Power Set of a Set

Definition
Let U be a set.
The power set of U, denoted P(U), is the set of all subsets of U.

P(U) = {A | A ⊆ U}.
Note that

I A ⊆ U if and only if A ∈ P(U).
I F is a family of subsets of U if and only if F ⊆ P(U).

Example
If U = {1,2,3}, then

P(U) = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3},U}.
{1,3} ⊆ U, so {1,3} ∈ P(U).
If F = {{x} | x ∈ U} = {{1}, {2}, {3}}, then F ⊆ P(U).
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Cartesian Products and Functions

Definition
Given two sets U and V , the cartesian product of U and V is the
following set of ordered pairs:

U × V = {(u, v) | u ∈ U and v ∈ V}.

Definition
A function f from U to V is a subset of U × V , such that for any u ∈ U,
there exists a unique v ∈ V , such that (u, v) ∈ f .

Functions are often called maps or mappings.
U and V are the domain and codomain of f , respectively.
To indicate that f is a function from U to V , we write f : U → V .
If (u, v) ∈ f , we write f (u) = v .
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Images and Inverse Images

Definition
Let f : U → V , and let A ⊆ U and B ⊆ V .

The image of A under f is

f (A) = {f (x) | x ∈ A}.

The inverse image of B under f is

f−1(B) = {x ∈ U | f (x) ∈ B}.

The image or range of f is f (U) = {f (x) | x ∈ U}.

Example

Define f : R→ R by f (x) = x2. Then

f ([0,5]) = [0,25]
f−1([0,25]) = [−5,5]

The range of f is [0,∞).
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Injective and Surjective Functions

Definition
Let f : U → V then

f is injective (also called one-to-one) if for all u1,u2 ∈ U,

f (u1) = f (u2) implies u1 = u2.

f is surjective (also called onto) if f (U) = V , that is,

for any v ∈ V , there exists u ∈ U, such that f (u) = v .

A function that is both injective and surjective is called bijective.

Example
Give examples of injective and surjective functions.
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Countable and Uncountable Sets

Definition
A set A is countably infinite if there is a bijection between A and
the set of natural numbers N.
A set A is countable if it is finite or countably infinite.
A set is uncountable if it is not countable.

The following are equivalent:
A is countable
There exists an injective function f : A→ N
There exists a surjective function f : N→ A.

Example
Which of the following sets are countable?
{0,1,2, . . . ,10},N,Z,Q,R,C
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σ-algebras

Definition
Suppose Ω is a set and F is a family of subsets of Ω.
Then F is called a σ-algebra (or σ-field) if the following conditions
hold:

I Ω ∈ F
I A ∈ F implies A′ ∈ F
I A1,A2, . . . ∈ F implies A1 ∪ A2 ∪ · · · ∈ F .

Elements of F are called measurable sets.
(Ω,F) is called a measurable space.

Example
Show that a σ-algebra always has these two properties also:
∅ ∈ F
A1,A2, . . . ∈ F implies A1 ∩ A2 ∩ · · · ∈ F .
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σ-algebras

Definition
Suppose Ω is a set and F is a family of subsets of Ω.
Then F is called a σ-algebra (or σ-field) if the following conditions
hold:

I Ω ∈ F
I A ∈ F implies A′ ∈ F
I A1,A2, . . . ∈ F implies A1 ∪ A2 ∪ · · · ∈ F .

Elements of F are called measurable sets.
(Ω,F) is called a measurable space.

Example
Let Ω be any set.
Prove that P(Ω), the power set of Ω, is a σ-algebra.
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σ-algebras

Definition
Suppose Ω is a set and F is a family of subsets of Ω.
Then F is called a σ-algebra (or σ-field) if the following conditions
hold:

I Ω ∈ F
I A ∈ F implies A′ ∈ F
I A1,A2, . . . ∈ F implies A1 ∪ A2 ∪ · · · ∈ F .

Elements of F are called measurable sets.
(Ω,F) is called a measurable space.

Example
Let Ω = R. There exits a σ-algebra B, called the Borel σ-algebra,
such that (a,b) ∈ B, for all a,b ∈ R.
Prove that [a,b] ∈ B, {a} ∈ B, and (a,∞) ∈ B, for all a,b ∈ R.
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Pairwise Disjoint Sets

Definition
If A ∩ B = ∅, then A and B are disjoint.

Definition
A family of sets Ai , i ∈ I is called pairwise disjoint if

Ai ∩ Aj = ∅, if i 6= j .

Also called mutually exclusive.
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Measures

Definition
Suppose (Ω,F) is a measurable space.
A function µ : F → [0,∞] is called a measure on (Ω,F) if

I µ(∅) = 0
I For any sequence of pairwise disjoint sets A1,A2, . . . ∈ F ,

µ

(∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai ).

If µ is a measure on (Ω,F), then (Ω,F , µ) is called a measure
space.

Example
Let (Ω,F , µ) be a measure space, and let A,B ∈ F .
If A ⊆ B, prove µ(A) ≤ µ(B).
If A ⊆ B, and µ(B) <∞, prove that µ(B \ A) = µ(B)− µ(A).
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A function µ : F → [0,∞] is called a measure on (Ω,F) if
I µ(∅) = 0
I For any sequence of pairwise disjoint sets A1,A2, . . . ∈ F ,

µ

(∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai ).

Example
Let (Ω,F) = (R,B). There exists a measure µ on this space
called Lebesgue measure, such that

µ((a,b)) = b − a, for all real numbers a < b.

For all real numbers a < b, prove the following:

I µ({a}) = 0
I µ([a,b]) = b − a

I µ((0,∞)) =∞
I µ(R) =∞.
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Measurable Functions

Definition
Let (Ω1,F1) and (Ω2,F2) be two measurable spaces.
A function f : Ω1 → Ω2 is measurable if

f−1(A) ∈ F1, for any A ∈ F2.

Example
Let (Ω1,F1) = (R,B), and let (Ω2,F2) = (Z,P(Z)).
Define f : R→ Z by f (x) = bxc, the greatest integer less than or
equal to x .
Prove that f is measurable.
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Probability Measures

Definition
A probability space is a measure space (S,F ,P), such that
P(S) = 1.
S is the sample space or observation space.
P is called a probability measure.
A set A ∈ F is called an event.
P(A) is the probability of the event A.

P(∅) = 0
P(S) = 1
For all A,B ∈ F

I If A ⊆ B, then P(A) ≤ P(B).
I 0 ≤ P(A) ≤ 1
I P(A′) = 1− P(A)
I P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Probability Measures
Definition

A probability space is a measure space (S,F ,P), such that
P(S) = 1.
S is the sample space or observation space.
P is called a probability measure.
A set A ∈ F is called an event.
P(A) is the probability of the event A.

Example
S = {1,2,3, . . .}
F = P(S)

Assume P({s}) = 2−s, for all s ∈ S
Find these probabilities:

I P({1,2})
I P({3,4,5, . . .})
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Discrete Probability Distributions
Definition

Suppose (S,P(S),P) is a probability space.
If S is a countable set, then P is a discrete probability measure.
P is completely determined by the function

f : S → [0,1]

f (s) = P({s}).

For any A ⊆ S,
P(A) =

∑
s∈A

f (s).

f is called the probability mass function (p.m.f.) or probability
distribution function (p.d.f.) of P.
Note that

I 0 ≤ f (s) ≤ 1, for all s ∈ S
I
∑

s∈S f (s) = 1.
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Random Variables

Definition
Let (S,F ,P) be a probability space.
A random variable is a measurable function

X : S → R.

(R is equipped with the Borel σ-algebra B.)

Example

X : S → R

X (s) =


0 if s = TTT
1 if s ∈ {HTT ,THT ,TTH}
2 if s ∈ {HHT ,HTH,THH}
3 if s = HHH
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The Distribution of a Random Variable

Notation
If X : S → R is a random variable,

[X ∈ A] = {s ∈ S | X (s) ∈ A}

Definition
Suppose (S,F ,P) is a probability space.
Let X : S → R be a random variable.
Then there is a corresponding probability space (R,B,PX ), where

PX (A) = P[X ∈ A] = P[X−1(A)], for all A ∈ B.

PX is the probability distribution of X .
It’s often just called the distribution of X .
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Support of a Random Variable

Definition
If X : S → R is a random variable, the support of X is the set of all
possible values of X :

supp(X ) = {X (s) | s ∈ S} = X (S).

Definition
A random variable X is discrete if supp(X ) is countable.
If X is discrete, the distribution of X is completely determined by
the function

f : R→ [0,1]

f (x) = PX ({x}) = P[X = x ].

f is called the probability mass function (p.m.f.) or probability
distribution function (p.d.f.) of X .
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Discrete Random Variables

Definition
A random variable X is discrete if supp(X ) is countable.
If X is discrete, the distribution of X is completely determined by
the function

f : R→ [0,1]

f (x) = PX ({x}) = P[X = x ].

f is called the probability mass function (p.m.f.) or probability
distribution function (p.d.f.) of X .
Note that

I 0 ≤ f (x) ≤ 1, for all x ∈ R
I
∑

x∈R f (x) = 1.
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Expected Value and Variance of a Random Variable

Definition
Let X be a discrete random variable with p.m.f. f .
The expected value of X is

µ = µX = E(X ) =
∑
x∈R

xf (x).

Given any function u : R→ R,

E [u(X )] =
∑
x∈R

u(x)f (x)

The variance of X is

σ2 = σ2
X = Var(X ) = E [(X − µX )2] = E(X 2)− E(X )2.

The standard deviation of X is σ = σX =
√

Var(X ).
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Figure: Binomial distribution with n = 10 and p = 0.7.

Figure: Binomial distribution with n = 100 and p = 0.2.
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Moment Generating Function of a Random Variable

Definition
Let X be a random variable.
Assume there exists h > 0, such that

M(t) = E [etX ] converges, for − h < t < h.

Then M is called the moment-generating function (m.g.f.) of X .
If the above expected value does not exists on some interval
(−h,h), then the m.g.f. does not exist.

If X is a random variable, and its m.g.f. exists, then

E(X r ) = M(r)(0), for any r = 1,2, . . .
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Cumulative Distribution Function of a Random Variable

Definition
The cumulative distribution function (c.d.f.) of the random variable
X is

F : R→ [0,1]

F (x) = P[X ≤ x ].

Also called the distribution function.
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Let X be a discrete random variable.
The distribution or probability distribution of X is the probability
measure

PX : B → [0,1]

PX (A) = P[X ∈ A]

The probability mass function (p.m.f.) or probability distribution
function (p.d.f.) of X is

f : R→ [0,1]

f (x) = P[X = x ]

The cumulative distribution function (c.d.f.) or distribution function
(d.f.) of the random variable X is

F : R→ [0,1]

F (x) = P[X ≤ x ].
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Identically Distributed Random Variables

Definition
Let X and Y be two random variables.
Then X and Y have the same distribution if

PX = PY

We say that X and Y are identically distributed.

Given two discrete random variables X and Y , the following are
equivalent:

X and Y are identically distributed, PX = PY

X and Y have the same p.m.f., fX = fY
X and Y have the same c.d.f., FX = FY

X and Y have the same m.g.f., MX = MY
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Continuous Random Variables
Definition

Let X be a random variable, and suppose there is a function

f : R→ [0,∞)

such that, for any real numbers a < b,

P(a < X < b) =

∫ b

a
f (x) dx .

Then the distribution of X is continuous, and f is the probability
density function (p.d.f.).
For any A ∈ B,

P(X ∈ A) =

∫
A

f (x) dx .

I 0 ≤ f (x), for all x ∈ R
I
∫∞
−∞ f (x) dx = 1.
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Discrete vs. Continuous Random Variables

Discrete

f is the probability mass
function (p.m.f.)

∑
x∈R f (x) = 1

P(X ∈ A) =
∑

x∈A f (x)

E [u(X )] =
∑

x∈R u(x)f (x)

Continuous

f is the probability density
function (p.d.f.)∫
R f (x) dx = 1

P(X ∈ A) =
∫

A f (x) dx

E [u(X )] =
∫
R u(x)f (x) dx
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Given two continuous random variables X and Y , the following are
equivalent:

X and Y are identically distributed, PX = PY

The p.d.f.’s of X and Y are equal almost everywhere,

µ({x | fX (x) 6= fY (x)}) = 0.

X and Y have the same c.d.f., FX = FY

X and Y have the same m.g.f., MX = MY
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Combinations

Consider a set of n objects.
The number of different subsets of size r is(

n
r

)
=

n!

r !(n − r)!
.

Example
How many five card poker hands are there?

Example
How many distinct permutations are there of the letters

AAAAAAAFFF
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The Hypergeometric Distribution

Example
A car dealership has 20 cars: 12 Fords and 8 Chevrolets.
5 cars are selected at random without replacement.
What’s the probability of selecting exactly 3 Fords?

Hypergeometric Distribution
N1 = number of objects of type 1
N2 = number of objects of type 2
Random sample without replacement.
n = sample size.
X = number of objects in sample of type 1

P(X = x) = f (x) =

(N1
x

)( N2
n−x

)(N1+N2
n

) , for x ≤ n, x ≤ N1,n − x ≤ N2.
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Independent Events

Definition
Two events A and B are statistically independent if

P(A ∩ B) = P(A)P(B).

Example
S = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}
All outcomes are equilikely.
A = {HHH,HHT ,HTH,HTT} (First coin is heads)
B = {HHH,HHT ,THH,THT} (Second coin is heads)
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Independence of Multiple Events

Definition
A family of events {Ai | i ∈ I}, is statistically independent if

P(Ai1 ∩ · · · ∩ Aik ) = P(Ai1) · · ·P(Aik ),

for any subfamily of events {Ai1 , . . . ,Aik}.
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Independent Random Variables

Definition
Two random variables X and Y are statistically independent if

P(X ∈ A and Y ∈ B) = P(X ∈ A)P(Y ∈ B), for all A,B ∈ B
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The Binomial Distribution

Example
A football player kicks 10 field goals.
Chance of making each field goal is 80%.
The field goals are statistically independent.
Find the probability of making exactly 7 of the field goals.

Binomial Distribution
Sequence of n trials
Each trial has only two possible outcomes, “success” and “failure”
p = probability of “success” on a single trial
Trials are statistically independent
X = number of “successes” that actually occur

P(X = x) = f (x) =

(
n
x

)
px (1− p)n−x , for x = 0,1, . . . ,n.

(Tarleton State University) Ch 1 and 2: Preliminaries 49 / 67



Example
Find the probability of making between 6 and 9 field goals inclusive?
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The Normal Distribution
Definition

Suppose µ ∈ R, and σ2 > 0.
The normal distribution with mean µ and variance σ2, is given by

f (x) =
1√
2πσ

exp
{
−(x − µ)2

2σ2

}
, −∞ < x <∞.

Notation: N(µ, σ2)

Figure: Normal distribution with µ = 500 and σ = 100.
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Standard Normal Distribution

Definition
The distribution N(µ = 0, σ2 = 1) is the standard normal distribution.

Standardizing a Normal Random Variable

If X ∼ N(µ, σ2), then

Z =
X − µ
σ
∼ N(0,1).
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The Central Limit Theorem

Theorem (5.6-1)
Suppose X1,X2, . . . is a sequence of IID random variables,
from a distribution with finite mean µ
and finite positive variance σ2.
Let X = 1

n
∑n

i=1 Xi , for n = 1,2, . . .
Then, as n→∞,

X − µ
σ/
√

n
=

∑n
i=1 Xi − nµ√

nσ
⇒ N(0,1).
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Informal Statement of CLT

Informal CLT
Suppose X1, . . . ,Xn is a random sample
from a distribution with finite mean µ
and finite positive variance σ2.
Then, if n is sufficiently large,

X ≈ N(µ, σ2/n), and

n∑
i=1

Xi ≈ N(nµ,nσ2).

Conventionally, values of n ≥ 30 are usually considered
sufficiently large, although this text applies the approximation for
lower values of n, such as n ≥ 20.
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Normal Approximation to the Binomial Distribution
If np ≥ 5 and n(1− p) ≥ 5, then

b(n,p) ≈ N(µ = np, σ2 = np(1− p)).

(Tarleton State University) Ch 1 and 2: Preliminaries 55 / 67



Outline

1 Set Theory Review

2 Brief Overview of Measure Theory

3 Probability Theory

4 The Hypergeometric, Binomial, and Normal Distributions

5 Statistical Inference

(Tarleton State University) Ch 1 and 2: Preliminaries 56 / 67



The t-distribution

Definition
Let r be a positive integer.
The t-distribution with r degrees of freedom is given by

f (t) =
Γ((r + 1)/2)√
πrΓ(r/2)

1
(1 + t2/r)(r+1)/2 , −∞ < t <∞.

As r →∞, t(r)⇒ N(0,1).
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Test Statistics for the Normal Distribution

Proposition

Consider a random sample X1, . . . ,Xn from a N(µ, σ2) population.
X1, . . . ,Xn are IID, and Xi ∼ N(µ, σ2), for all i .

Z =
X − µ
σ/
√

n
∼ N(0,1).

T =
X − µ
S/
√

n
∼ t(n − 1).
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Critical Values for Normal and t-distributions

Definition
Let Z ∼ N(0,1) and T ∼ t(r).
Let α ∈ (0,1).
We define zα and tα(r) as follows:

P[Z > zα] = α.

P[T > tα(r)] = α.

α zα/2 tα/2(30)

0.10 1.645 1.697
0.05 1.96 2.042
0.01 2.575 2.750
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A Hypothesis Testing Example

Example

Assume that packages of M&M’s have a N(µ, σ2) distribution.
A sample of 31 packages of M&M’s had sample mean X = 235.1
grams and sample standard deviation S = 5.7 grams.
Perform the following hypothesis test at the α = 0.05 significance
level

H0 : µ = 232.5 vs. H1 : µ 6= 232.5.
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Hypothesis Test: Mean of a Normal Distribution

Let X1, . . . ,Xn ∼ N(µ, σ2) be a random sample.
For the testing problem

H0 : µ = µ0 vs. H1 : µ 6= µ0,

the test statistic is

T =
X − µ0

S/
√

n
.

The null distribution of T is

T ∼ t(n − 1).

The decision rule is

Reject H0, if |T | ≥ tα/2(n − 1)

Do not reject H0, otherwise.

The critical region is C = {t ∈ R | |t | ≥ tα/2(n − 1)}.
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Hypothesis Testing Terminology

Definition
A statistic is any variable computed based on a sample of data.
A test statistic is a statistic used to perform a hypothesis test.
The null distribution of a test statistic is its distribution under the
assumption that H0 is true.
The critical region or rejection region of a test is the set of all
values of the test statistic that result in rejecting H0.
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Two Types of Errors
Type I error: Rejecting H0 when it is true.
Type II error: Not rejecting H0 when it is false.

The significance level of a test is

α = max{P(type I error) | H0 is true}.
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The significance level of a test is

α = max{P(type I error) | H0 is true}
= max{P(rejecting H0) | H0 is true}
= max{P(T ∈ C) | H0 is true}
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p-values

Definition
The p-value is the smallest significance level at which the null
hypothesis would be rejected for a given observation.
Also called the observed significance level.
It is the probability of all values more extreme than T under the
null distribution.
The smaller the p-value is, the stronger the evidence is against
H0.
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Confidence Intervals

Definition
A 1− α confidence interval for a parameter θ is a random interval
[L,U], such that

P(L ≤ θ ≤ U) = 1− α.

Let X1, . . . ,Xn ∼ N(µ, σ2) be a random sample.
A 1− α confidence interval for µ is[

X − tα/2
S√
n
,X + tα/2

S√
n

]
Also written as

X ± tα/2
S√
n
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Hypothesis Testing Conclusions

Rejecting H0 means there is strong evidence that H0 is false.
Not rejecting H0 merely means there is a lack of strong evidence
against H0.
There is not strong evidence in favor of anything, including H0.
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