Nonparametric Statistics Notes Chapters One and Two: Preliminaries

Jesse Crawford

Department of Mathematics
Tarleton State University

Outline

(9) Set Theory Review
(2) Brief Overview of Measure Theory
(3) Probability Theory

4 The Hypergeometric, Binomial, and Normal Distributions
(5) Statistical Inference

Sets and Elements

Definition

- A set is a collection of mathematical objects, called the elements of the set.
- $x \in A$ means that x is an element of the set A.
- $x \notin A$ means that x is not an element of the set A.

Example

- Let $A=\{1,2,3\}$

$$
\begin{aligned}
& 1 \in A \\
& 2 \in A \\
& 3 \in A \\
& 7 \notin A
\end{aligned}
$$

- The order that elements are listed in a set doesn't matter.

$$
\{4,8,9,15\}=\{8,15,4,9\}
$$

Example

Sets can contain infinitely many elements. If the set exhibits an obvious pattern, it may be sufficient to simply list a few elements of the set.

- Let $A=\{5,10,15, \ldots\}$

$$
\begin{aligned}
& 25 \in A \\
& 28 \notin A
\end{aligned}
$$

Sets can also be defined with set builder notation.

- Let $B=\{x \mid 4 \leq x \leq 9\}$

$$
\begin{aligned}
& 6 \in B \\
& 10 \notin B
\end{aligned}
$$

Here is common notation used for certain important sets of numbers.

- $\mathbb{N}=\{1,2,3, \ldots\}$ (Set of Natural Numbers)
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ (Set of Integers)
- $\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$ (Set of Rational Numbers)
- \mathbb{R} (Set of Real Numbers)
- \mathbb{C} (Set of Complex Numbers)

Interval Notation

- $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$
- $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$
- $[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\}$
- $(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}$
- $(a, \infty)=\{x \in \mathbb{R} \mid a<x\}$
- $[a, \infty)=\{x \in \mathbb{R} \mid a \leq x\}$
- $(-\infty, b)=\{x \in \mathbb{R} \mid x<b\}$
- $(-\infty, b]=\{x \in \mathbb{R} \mid x \leq b\}$
- $(-\infty, \infty)=\mathbb{R}$

Unions

Definition

Given two sets A and B, the union of A and B is

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} .
$$

Note: In mathematical logic, "or" means "and/or", so " $x \in A$ or $x \in B$ " means $x \in A$ or $x \in B$ or both.

Example

- If $A=\{1,2,3,4,5\}$ and $B=\{3,4,5,6,7\}$, then

$$
A \cup B=\{1,2,3,4,5,6,7\}
$$

- If $A=[0,8)$ and $B=(6,10]$, then

$$
A \cup B=[0,10] .
$$

Intersections

Definition

Given two sets A and B, the intersection of A and B is

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\} .
$$

Example

- If $A=\{1,2,3,4,5\}$ and $B=\{3,4,5,6,7\}$, then

$$
A \cap B=\{3,4,5\} .
$$

- If $A=[0,8)$ and $B=(6,10]$, then

$$
A \cap B=(6,8) .
$$

Universal Sets and Complements

Definition

- In most situations, there is a universal set U that contains all elements under consideration.
- The complement of a set A is

$$
A^{\prime}=\{x \in U \mid x \notin A\} .
$$

Example

- If $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{1,2,3\}$, then

$$
A^{\prime}=\{4,5,6,7,8,9,10\}
$$

- If $U=\mathbb{R}$ and $A=[5,8)$, then

$$
A^{\prime}=(-\infty, 5) \cup[8, \infty)
$$

Set Difference

Definition

Given two sets A and B,

$$
A \backslash B=\{x \in A \mid x \notin B\} .
$$

Example

- If $A=\{1,2,3,4,5\}$ and $B=\{3,4,5,6,7\}$, then

$$
A \backslash B=\{1,2\}
$$

- If $A=[0,8)$ and $B=(6,10]$, then

$$
A \backslash B=[0,6]
$$

Note that complements are just a special case of set difference, since

$$
A^{\prime}=\{x \in U \mid x \notin A\}=U \backslash A .
$$

Subsets and the Empty Set

Definition

A is a subset of B, written $A \subseteq B$, if every element of A is an element of B.

Example

- If $A=\{1,2,3\}$ and $B=\{1,2,3,4,5\}$, then $A \subseteq B$.
- If $A=\{1,2,3\}$, and $B=\{1,2,8,9\}$, then $A \nsubseteq B$, because $3 \in A$ but $3 \notin B$.

Definition

The empty set is the set $\emptyset=\{ \}$ that contains no elements.

- For any set A
$\Rightarrow A \cup \emptyset=A$
$-A \cap \emptyset=\emptyset$
$-\emptyset \subseteq A$
- $A \subseteq A$
- $A \subseteq U$, where U is the universal set.

Families of Sets

Definition

- A family \mathcal{F} of sets is simply a set whose elements are also sets.
- The union of all sets in the family is

$$
\bigcup_{A \in \mathcal{F}} A=\{x \mid x \in A, \text { for some } A \in \mathcal{F}\} .
$$

- The intersection of all sets in the family is

$$
\bigcap_{A \in \mathcal{F}} A=\{x \mid x \in A, \text { for all } A \in \mathcal{F}\}
$$

Example

If $\mathcal{F}=\{[-x, x] \mid x>0\}$, evaluate the following

$$
\bigcup_{A \in \mathcal{F}} A \text { and } \bigcap_{A \in \mathcal{F}} A .
$$

Definition

- If A_{i} is a set, for every $i \in I$, then

0

$$
\bigcup_{i \in I} A_{i}=\left\{x \mid x \in A_{i}, \text { for some } i \in I\right\} .
$$

$$
\bigcap_{i \in I} A_{i}=\left\{x \mid x \in A_{i} \text {, for all } i \in I\right\} .
$$

- The variable i is called the index, and l is the index set. When the index set is $I=\{1,2,3, \ldots\}$, we can write

$$
\bigcup_{i=1}^{\infty} A_{i} \text { and } \bigcap_{i=1}^{\infty} A_{i} .
$$

Example

$$
\bigcap_{i=1}^{\infty}\left(0,5+\frac{1}{i}\right)
$$

The Power Set of a Set

Definition

- Let U be a set.
- The power set of U, denoted $\mathcal{P}(U)$, is the set of all subsets of U.

$$
\mathcal{P}(U)=\{A \mid A \subseteq U\}
$$

- Note that
$A \subseteq U$ if and only if $A \in \mathcal{P}(U)$.
\mathcal{F} is a family of subsets of U if and only if $\mathcal{F} \subseteq \mathcal{P}(U)$.

Example

If $U=\{1,2,3\}$, then

- $\mathcal{P}(U)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}, U\}$.
- $\{1,3\} \subseteq U$, so $\{1,3\} \in \mathcal{P}(U)$.
- If $\mathcal{F}=\{\{x\} \mid x \in U\}=\{\{1\},\{2\},\{3\}\}$, then $\mathcal{F} \subseteq \mathcal{P}(U)$.

Cartesian Products and Functions

Definition

Given two sets U and V, the cartesian product of U and V is the following set of ordered pairs:

$$
U \times V=\{(u, v) \mid u \in U \text { and } v \in V\} .
$$

Definition

A function from U to V is a subset of $U \times V$, such that for any $u \in U$, there exists a unique $v \in V$, such that $(u, v) \in f$.

- Functions are often called maps or mappings.
- U and V are the domain and codomain of f, respectively.
- To indicate that f is a function from U to V, we write $f: U \rightarrow V$.
- If $(u, v) \in f$, we write $f(u)=v$.

Images and Inverse Images

Definition

Let $f: U \rightarrow V$, and let $A \subseteq U$ and $B \subseteq V$.

- The image of A under f is

$$
f(A)=\{f(x) \mid x \in A\}
$$

- The inverse image of B under f is

$$
f^{-1}(B)=\{x \in U \mid f(x) \in B\} .
$$

- The image or range of f is $f(U)=\{f(x) \mid x \in U\}$.

Example

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$. Then

- $f([0,5])=[0,25]$
- The range of f is $[0, \infty)$.
- $f^{-1}([0,25])=[-5,5]$

Injective and Surjective Functions

Definition

Let $f: U \rightarrow V$ then

- f is injective (also called one-to-one) if for all $u_{1}, u_{2} \in U$,

$$
f\left(u_{1}\right)=f\left(u_{2}\right) \text { implies } u_{1}=u_{2}
$$

- f is surjective (also called onto) if $f(U)=V$, that is, for any $v \in V$, there exists $u \in U$, such that $f(u)=v$.
- A function that is both injective and surjective is called bijective.

Example

Give examples of injective and surjective functions.

Countable and Uncountable Sets

Definition

- A set A is countably infinite if there is a bijection between A and the set of natural numbers \mathbb{N}.
- A set A is countable if it is finite or countably infinite.
- A set is uncountable if it is not countable.

The following are equivalent:

- A is countable
- There exists an injective function $f: A \rightarrow \mathbb{N}$
- There exists a surjective function $f: \mathbb{N} \rightarrow A$.

Example

Which of the following sets are countable?
$\{0,1,2, \ldots, 10\}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$

Outline

(1) Set Theory Review
(2) Brief Overview of Measure Theory
(3) Probability Theory

4 The Hypergeometric, Binomial, and Normal Distributions
(5) Statistical Inference

σ-algebras

Definition

- Suppose Ω is a set and \mathcal{F} is a family of subsets of Ω.
- Then \mathcal{F} is called a σ-algebra (or σ-field) if the following conditions hold:

$$
\begin{aligned}
& \Omega \in \mathcal{F} \\
& A \in \mathcal{F} \text { implies } A^{\prime} \in \mathcal{F} \\
& A_{1}, A_{2}, \ldots \in \mathcal{F} \text { implies } A_{1} \cup A_{2} \cup \cdots \in \mathcal{F} .
\end{aligned}
$$

- Elements of \mathcal{F} are called measurable sets.
- (Ω, \mathcal{F}) is called a measurable space.

Example

Show that a σ-algebra always has these two properties also:

- $\emptyset \in \mathcal{F}$
- $A_{1}, A_{2}, \ldots \in \mathcal{F}$ implies $A_{1} \cap A_{2} \cap \cdots \in \mathcal{F}$.

σ-algebras

Definition

- Suppose Ω is a set and \mathcal{F} is a family of subsets of Ω.
- Then \mathcal{F} is called a σ-algebra (or σ-field) if the following conditions hold:

$$
\begin{aligned}
& \Omega \in \mathcal{F} \text { implies } A^{\prime} \in \mathcal{F} \\
& A \in \mathcal{F} \text { implies } A_{1} \cup A_{2} \cup \cdots \in \mathcal{F} \\
& A_{1}, A_{2}, \ldots \in \mathcal{F} \text {. }
\end{aligned}
$$

- Elements of \mathcal{F} are called measurable sets.
- (Ω, \mathcal{F}) is called a measurable space.

Example

- Let Ω be any set.
- Prove that $\mathcal{P}(\Omega)$, the power set of Ω, is a σ-algebra.

σ-algebras

Definition

- Suppose Ω is a set and \mathcal{F} is a family of subsets of Ω.
- Then \mathcal{F} is called a σ-algebra (or σ-field) if the following conditions hold:

$$
\begin{aligned}
& \Omega \in \mathcal{F} \\
& A \in \mathcal{F} \text { implies } A^{\prime} \in \mathcal{F} \\
& A_{1}, A_{2}, \ldots \in \mathcal{F} \text { implies } A_{1} \cup A_{2} \cup \cdots \in \mathcal{F} .
\end{aligned}
$$

- Elements of \mathcal{F} are called measurable sets.
- (Ω, \mathcal{F}) is called a measurable space.

Example

- Let $\Omega=\mathbb{R}$. There exits a σ-algebra \mathcal{B}, called the Borel σ-algebra, such that $(a, b) \in \mathcal{B}$, for all $a, b \in \mathbb{R}$.
- Prove that $[a, b] \in \mathcal{B},\{a\} \in \mathcal{B}$, and $(a, \infty) \in \mathcal{B}$, for all $a, b \in \mathbb{R}$.

Pairwise Disjoint Sets

Definition

If $A \cap B=\emptyset$, then A and B are disjoint.

Definition

- A family of sets $A_{i}, i \in I$ is called pairwise disjoint if

$$
A_{i} \cap A_{j}=\emptyset, \text { if } i \neq j
$$

- Also called mutually exclusive.

Measures

Definition

- Suppose (Ω, \mathcal{F}) is a measurable space.
- A function $\mu: \mathcal{F} \rightarrow[0, \infty]$ is called a measure on (Ω, \mathcal{F}) if

$$
\mu(\emptyset)=0
$$

For any sequence of pairwise disjoint sets $A_{1}, A_{2}, \ldots \in \mathcal{F}$,

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) .
$$

- If μ is a measure on (Ω, \mathcal{F}), then $(\Omega, \mathcal{F}, \mu)$ is called a measure space.

Example

- Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $A, B \in \mathcal{F}$.
- If $A \subseteq B$, prove $\mu(A) \leq \mu(B)$.
- If $A \subseteq B$, and $\mu(B)<\infty$, prove that $\mu(B \backslash A)=\mu(B)-\mu(A)$.
- A function $\mu: \mathcal{F} \rightarrow[0, \infty]$ is called a measure on (Ω, \mathcal{F}) if

$$
\mu(\emptyset)=0
$$

For any sequence of pairwise disjoint sets $A_{1}, A_{2}, \ldots \in \mathcal{F}$,

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) .
$$

Example

- Let $(\Omega, \mathcal{F})=(\mathbb{R}, \mathcal{B})$. There exists a measure μ on this space called Lebesgue measure, such that

$$
\mu((a, b))=b-a, \text { for all real numbers } a<b .
$$

- For all real numbers $a<b$, prove the following:

$$
\begin{array}{ll}
\mu(\{a\})=0 & \mu((0, \infty))=\infty \\
\mu([a, b])=b-a & \mu(\mathbb{R})=\infty .
\end{array}
$$

Measurable Functions

Definition

- Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ be two measurable spaces.
- A function $f: \Omega_{1} \rightarrow \Omega_{2}$ is measurable if

$$
f^{-1}(A) \in \mathcal{F}_{1}, \text { for any } A \in \mathcal{F}_{2}
$$

Example

- Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)=(\mathbb{R}, \mathcal{B})$, and let $\left(\Omega_{2}, \mathcal{F}_{2}\right)=(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$.
- Define $f: \mathbb{R} \rightarrow \mathbb{Z}$ by $f(x)=\lfloor x\rfloor$, the greatest integer less than or equal to x.
- Prove that f is measurable.

Outline

(1) Set Theory Review
(2) Brief Overview of Measure Theory
(3) Probability Theory

4 The Hypergeometric, Binomial, and Normal Distributions
(5) Statistical Inference

Probability Measures

Definition

- A probability space is a measure space (S, \mathcal{F}, P), such that $P(S)=1$.
- S is the sample space or observation space.
- P is called a probability measure.
- A set $A \in \mathcal{F}$ is called an event.
- $P(A)$ is the probability of the event A.
- $P(\emptyset)=0$
- $P(S)=1$
- For all $A, B \in \mathcal{F}$

$$
\begin{aligned}
& \text { If } A \subseteq B \text {, then } P(A) \leq P(B) \text {. } \\
& 0 \leq P(A) \leq 1 \\
& P\left(A^{\prime}\right)=1-P(A) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Probability Measures

Definition

- A probability space is a measure space (S, \mathcal{F}, P), such that $P(S)=1$.
- S is the sample space or observation space.
- P is called a probability measure.
- A set $A \in \mathcal{F}$ is called an event.
- $P(A)$ is the probability of the event A.

Example

- $S=\{1,2,3, \ldots\}$
- $\mathcal{F}=\mathcal{P}(S)$
- Assume $P(\{s\})=2^{-s}$, for all $s \in S$
- Find these probabilities:

$$
\begin{aligned}
& P(\{1,2\}) \\
& P(\{3,4,5, \ldots\})
\end{aligned}
$$

Discrete Probability Distributions

Definition

- Suppose $(S, \mathcal{P}(S), P)$ is a probability space.
- If S is a countable set, then P is a discrete probability measure.
- P is completely determined by the function

$$
\begin{aligned}
f: S & \rightarrow[0,1] \\
f(s) & =P(\{s\}) .
\end{aligned}
$$

- For any $A \subseteq S$,

$$
P(A)=\sum_{s \in A} f(s) .
$$

- f is called the probability mass function (p.m.f.) or probability distribution function (p.d.f.) of P.
- Note that

$$
\begin{aligned}
& 0 \leq f(s) \leq 1, \text { for all } s \in S \\
& \sum_{s \in S} f(s)=1 .
\end{aligned}
$$

Random Variables

Definition

- Let (S, \mathcal{F}, P) be a probability space.
- A random variable is a measurable function

$$
X: S \rightarrow \mathbb{R}
$$

- $(\mathbb{R}$ is equipped with the Borel σ-algebra \mathcal{B}.)

Example

$$
\begin{gathered}
X: S \rightarrow \mathbb{R} \\
X(s)= \begin{cases}0 & \text { if } s=T T T \\
1 & \text { if } s \in\{H T T, T H T, T T H\} \\
2 & \text { if } s \in\{H H T, H T H, T H H\} \\
3 & \text { if } s=H H H\end{cases}
\end{gathered}
$$

The Distribution of a Random Variable

Notation

If $X: S \rightarrow \mathbb{R}$ is a random variable,

$$
[X \in A]=\{s \in S \mid X(s) \in A\}
$$

Definition

- Suppose (S, \mathcal{F}, P) is a probability space.
- Let $X: S \rightarrow \mathbb{R}$ be a random variable.
- Then there is a corresponding probability space $\left(\mathbb{R}, \mathcal{B}, P_{X}\right)$, where

$$
P_{X}(A)=P[X \in A]=P\left[X^{-1}(A)\right] \text {, for all } A \in \mathcal{B} .
$$

- P_{X} is the probability distribution of X.
- It's often just called the distribution of X.

Support of a Random Variable

Definition

If $X: S \rightarrow \mathbb{R}$ is a random variable, the support of X is the set of all possible values of X :

$$
\operatorname{supp}(X)=\{X(s) \mid s \in S\}=X(S) .
$$

Definition

- A random variable X is discrete if $\operatorname{supp}(X)$ is countable.
- If X is discrete, the distribution of X is completely determined by the function

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow[0,1] \\
f(x) & =P_{X}(\{x\})=P[X=x]
\end{aligned}
$$

- f is called the probability mass function (p.m.f.) or probability distribution function (p.d.f.) of X.

Discrete Random Variables

Definition

- A random variable X is discrete if $\operatorname{supp}(X)$ is countable.
- If X is discrete, the distribution of X is completely determined by the function

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow[0,1] \\
f(x) & =P_{X}(\{x\})=P[X=x]
\end{aligned}
$$

- f is called the probability mass function (p.m.f.) or probability distribution function (p.d.f.) of X.
- Note that

$$
\begin{aligned}
& 0 \leq f(x) \leq 1, \text { for all } x \in \mathbb{R} \\
& \sum_{x \in \mathbb{R}} f(x)=1
\end{aligned}
$$

Expected Value and Variance of a Random Variable

Definition

- Let X be a discrete random variable with p.m.f. f.
- The expected value of X is

$$
\mu=\mu X=E(X)=\sum_{x \in \mathbb{R}} x f(x)
$$

- Given any function $u: \mathbb{R} \rightarrow \mathbb{R}$,

$$
E[u(X)]=\sum_{x \in \mathbb{R}} u(x) f(x)
$$

- The variance of X is

$$
\sigma^{2}=\sigma_{X}^{2}=\operatorname{Var}(X)=E\left[\left(X-\mu_{X}\right)^{2}\right]=E\left(X^{2}\right)-E(X)^{2}
$$

- The standard deviation of X is $\sigma=\sigma_{X}=\sqrt{\operatorname{Var}(X)}$.

Figure: Binomial distribution with $n=10$ and $p=0.7$.

Figure: Binomial distribution with $n=100$ and $p=0.2$.

Moment Generating Function of a Random Variable

Definition

- Let X be a random variable.
- Assume there exists $h>0$, such that

$$
M(t)=E\left[e^{t X}\right] \text { converges, for }-h<t<h
$$

- Then M is called the moment-generating function (m.g.f.) of X.
- If the above expected value does not exists on some interval $(-h, h)$, then the m.g.f. does not exist.

If X is a random variable, and its m.g.f. exists, then

$$
E\left(X^{r}\right)=M^{(r)}(0), \text { for any } r=1,2, \ldots
$$

Cumulative Distribution Function of a Random Variable

Definition

- The cumulative distribution function (c.d.f.) of the random variable X is

$$
\begin{aligned}
& F: \mathbb{R} \rightarrow[0,1] \\
& F(x)=P[X \leq x]
\end{aligned}
$$

- Also called the distribution function.
- Let X be a discrete random variable.
- The distribution or probability distribution of X is the probability measure

$$
\begin{aligned}
& P_{X}: \mathcal{B} \rightarrow[0,1] \\
& P_{X}(A)=P[X \in A]
\end{aligned}
$$

- The probability mass function (p.m.f.) or probability distribution function (p.d.f.) of X is

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow[0,1] \\
f(x) & =P[X=x]
\end{aligned}
$$

- The cumulative distribution function (c.d.f.) or distribution function (d.f.) of the random variable X is

$$
\begin{aligned}
& F: \mathbb{R} \rightarrow[0,1] \\
& F(x)=P[X \leq x]
\end{aligned}
$$

Identically Distributed Random Variables

Definition

- Let X and Y be two random variables.
- Then X and Y have the same distribution if

$$
P_{X}=P_{Y}
$$

- We say that X and Y are identically distributed.

Given two discrete random variables X and Y, the following are equivalent:

- X and Y are identically distributed, $P_{X}=P_{Y}$
- X and Y have the same p.m.f., $f_{X}=f_{Y}$
- X and Y have the same c.d.f., $F_{X}=F_{Y}$
- X and Y have the same m.g.f., $M_{X}=M_{Y}$

Continuous Random Variables

Definition

- Let X be a random variable, and suppose there is a function

$$
f: \mathbb{R} \rightarrow[0, \infty)
$$

such that, for any real numbers $a<b$,

$$
P(a<X<b)=\int_{a}^{b} f(x) d x
$$

- Then the distribution of X is continuous, and f is the probability density function (p.d.f.).
- For any $A \in \mathcal{B}$,

$$
P(X \in A)=\int_{A} f(x) d x
$$

$$
\begin{aligned}
& 0 \leq f(x), \text { for all } x \in \mathbb{R} \\
& \int_{-\infty}^{\infty} f(x) d x=1 .
\end{aligned}
$$

Discrete vs. Continuous Random Variables

- Discrete
- f is the probability mass function (p.m.f.)
- $\sum_{x \in \mathbb{R}} f(x)=1$
- $P(X \in A)=\sum_{x \in A} f(x)$
- $E[u(X)]=\sum_{x \in \mathbb{R}} u(x) f(x)$
- Continuous
- f is the probability density function (p.d.f.)
- $\int_{\mathbb{R}} f(x) d x=1$
- $P(X \in A)=\int_{A} f(x) d x$
- $E[u(X)]=\int_{\mathbb{R}} u(x) f(x) d x$

Given two continuous random variables X and Y, the following are equivalent:

- X and Y are identically distributed, $P_{X}=P_{Y}$
- The p.d.f.'s of X and Y are equal almost everywhere,

$$
\mu\left(\left\{x \mid f_{X}(x) \neq f_{Y}(x)\right\}\right)=0 .
$$

- X and Y have the same c.d.f., $F_{X}=F_{Y}$
- X and Y have the same m.g.f., $M_{X}=M_{Y}$

Outline

(1) Set Theory Review
(2) Brief Overview of Measure Theory
(3) Probability Theory

4 The Hypergeometric, Binomial, and Normal Distributions
(5) Statistical Inference

Combinations

- Consider a set of n objects.
- The number of different subsets of size r is

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Example

How many five card poker hands are there?

Example

How many distinct permutations are there of the letters

AAAAAAAFFF

The Hypergeometric Distribution

Example

- A car dealership has 20 cars: 12 Fords and 8 Chevrolets.
- 5 cars are selected at random without replacement.
- What's the probability of selecting exactly 3 Fords?

Hypergeometric Distribution

- $N_{1}=$ number of objects of type 1
- $N_{2}=$ number of objects of type 2
- Random sample without replacement.
- $n=$ sample size.
- $X=$ number of objects in sample of type 1

$$
P(X=x)=f(x)=\frac{\binom{N_{1}}{x}\binom{N_{2}}{n-x}}{\binom{N_{1}+N_{2}}{n}} \text {, for } x \leq n, x \leq N_{1}, n-x \leq N_{2}
$$

Independent Events

Definition

Two events A and B are statistically independent if

$$
P(A \cap B)=P(A) P(B) .
$$

Example

- $S=\{H H H$, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$
- All outcomes are equilikely.
- $A=\{H H H, H H T, H T H, H T T\}$ (First coin is heads)
- $B=\{H H H$, HHT, THH, THT $\}$ (Second coin is heads)

Independence of Multiple Events

Definition

A family of events $\left\{A_{i} \mid i \in l\right\}$, is statistically independent if

$$
P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdots P\left(A_{i_{k}}\right),
$$

for any subfamily of events $\left\{A_{i_{i}}, \ldots, A_{i_{k}}\right\}$.

Independent Random Variables

Definition

Two random variables X and Y are statistically independent if

$$
P(X \in A \text { and } Y \in B)=P(X \in A) P(Y \in B) \text {, for all } A, B \in \mathcal{B}
$$

The Binomial Distribution

Example

- A football player kicks 10 field goals.
- Chance of making each field goal is 80%.
- The field goals are statistically independent.
- Find the probability of making exactly 7 of the field goals.

Binomial Distribution

- Sequence of n trials
- Each trial has only two possible outcomes, "success" and "failure"
- $p=$ probability of "success" on a single trial
- Trials are statistically independent
- $X=$ number of "successes" that actually occur

$$
P(X=x)=f(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \text { for } x=0,1, \ldots, n
$$

Example

Find the probability of making between 6 and 9 field goals inclusive?

The Normal Distribution

Definition

- Suppose $\mu \in \mathbb{R}$, and $\sigma^{2}>0$.
- The normal distribution with mean μ and variance σ^{2}, is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\},-\infty<x<\infty
$$

Notation: $\boldsymbol{N}\left(\mu, \sigma^{2}\right)$

Figure: Normal distribution with $\mu=500$ and $\sigma=100$.

Standard Normal Distribution

Definition

The distribution $N\left(\mu=0, \sigma^{2}=1\right)$ is the standard normal distribution.
Standardizing a Normal Random Variable
If $X \sim N\left(\mu, \sigma^{2}\right)$, then

$$
Z=\frac{X-\mu}{\sigma} \sim N(0,1) .
$$

The Central Limit Theorem

Theorem (5.6-1)

- Suppose X_{1}, X_{2}, \ldots is a sequence of IID random variables,
- from a distribution with finite mean μ
- and finite positive variance σ^{2}.
- Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, for $n=1,2, \ldots$
- Then, as $n \rightarrow \infty$,

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} \Rightarrow N(0,1)
$$

Informal Statement of CLT

Informal CLT

- Suppose X_{1}, \ldots, X_{n} is a random sample
- from a distribution with finite mean μ
- and finite positive variance σ^{2}.
- Then, if n is sufficiently large,

$$
\begin{aligned}
& \bar{X} \approx N\left(\mu, \sigma^{2} / n\right), \text { and } \\
& \sum_{i=1}^{n} X_{i} \approx N\left(n \mu, n \sigma^{2}\right) .
\end{aligned}
$$

- Conventionally, values of $n \geq 30$ are usually considered sufficiently large, although this text applies the approximation for lower values of n, such as $n \geq 20$.

Normal Approximation to the Binomial Distribution
If $n p \geq 5$ and $n(1-p) \geq 5$, then

$$
b(n, p) \approx N\left(\mu=n p, \sigma^{2}=n p(1-p)\right) .
$$

Outline

(1) Set Theory Review
(2) Brief Overview of Measure Theory
(3) Probability Theory

4 The Hypergeometric, Binomial, and Normal Distributions
(5) Statistical Inference

The t-distribution

Definition

- Let r be a positive integer.
- The t-distribution with r degrees of freedom is given by

$$
f(t)=\frac{\Gamma((r+1) / 2)}{\sqrt{\pi r} \Gamma(r / 2)} \frac{1}{\left(1+t^{2} / r\right)^{(r+1) / 2}},-\infty<t<\infty .
$$

- As $r \rightarrow \infty, t(r) \Rightarrow N(0,1)$.

Test Statistics for the Normal Distribution

Proposition

- Consider a random sample X_{1}, \ldots, X_{n} from a $N\left(\mu, \sigma^{2}\right)$ population.
- X_{1}, \ldots, X_{n} are IID, and $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, for all i.

$$
\begin{aligned}
& Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \\
& T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)
\end{aligned}
$$

Critical Values for Normal and t-distributions

Definition

- Let $Z \sim N(0,1)$ and $T \sim t(r)$.
- Let $\alpha \in(0,1)$.
- We define z_{α} and $t_{\alpha}(r)$ as follows:

$$
\begin{gathered}
P\left[Z>Z_{\alpha}\right]=\alpha . \\
P\left[T>t_{\alpha}(r)\right]=\alpha .
\end{gathered}
$$

α	$z_{\alpha / 2}$	$t_{\alpha / 2}(30)$
0.10	1.645	1.697
0.05	1.96	2.042
0.01	2.575	2.750

A Hypothesis Testing Example

Example

- Assume that packages of M\&M's have a $N\left(\mu, \sigma^{2}\right)$ distribution.
- A sample of 31 packages of M\&M's had sample mean $\bar{X}=235.1$ grams and sample standard deviation $S=5.7$ grams.
- Perform the following hypothesis test at the $\alpha=0.05$ significance level

$$
\mathrm{H}_{0}: \mu=232.5 \text { vs. } \mathrm{H}_{1}: \mu \neq 232.5
$$

- Let $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ be a random sample.
- For the testing problem

$$
\mathrm{H}_{0}: \mu=\mu_{0} \text { vs. } \mathrm{H}_{1}: \mu \neq \mu_{0}
$$

- the test statistic is

$$
T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

- The null distribution of T is

$$
T \sim t(n-1)
$$

- The decision rule is

Reject H_{0}, if $|T| \geq t_{\alpha / 2}(n-1)$
Do not reject H_{0}, otherwise.

- The critical region is $C=\left\{t \in \mathbb{R}| | t \mid \geq t_{\alpha / 2}(n-1)\right\}$.

Hypothesis Testing Terminology

Definition

- A statistic is any variable computed based on a sample of data.
- A test statistic is a statistic used to perform a hypothesis test.
- The null distribution of a test statistic is its distribution under the assumption that H_{0} is true.
- The critical region or rejection region of a test is the set of all values of the test statistic that result in rejecting H_{0}.

Two Types of Errors

- Type I error: Rejecting H_{0} when it is true.
- Type II error: Not rejecting H_{0} when it is false.

Given the Null Hypothesis Is

	True	False	
	Reject	Type I Error	Correct Decision
Your Decision Based On a Random Sample	DoNot Reject	Correct Decision	Type II Error

Two Types of Errors in Decision Making

- The significance level of a test is

$$
\alpha=\max \left\{P(\text { type I error }) \mid \mathrm{H}_{0} \text { is true }\right\} .
$$

Given the Null Hypothesis Is

	True	False	
	Reject	Type I Error	Correct Decision
Yn a Random Sample	Do Not Reject	Correct Decision	Type II Error

Two Types of Errors in Decisi on Making

- The significance level of a test is

$$
\begin{aligned}
\alpha & =\max \left\{P(\text { type I error }) \mid \mathrm{H}_{0} \text { is true }\right\} \\
& =\max \left\{P\left(\text { rejecting } \mathrm{H}_{0}\right) \mid \mathrm{H}_{0} \text { is true }\right\} \\
& =\max \left\{P(T \in C) \mid \mathrm{H}_{0} \text { is true }\right\}
\end{aligned}
$$

p-values

Definition

- The p-value is the smallest significance level at which the null hypothesis would be rejected for a given observation.
- Also called the observed significance level.
- It is the probability of all values more extreme than T under the null distribution.
- The smaller the p-value is, the stronger the evidence is against H_{0}.

Confidence Intervals

Definition

A $1-\alpha$ confidence interval for a parameter θ is a random interval
$[L, U]$, such that

$$
P(L \leq \theta \leq U)=1-\alpha .
$$

- Let $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ be a random sample.
- A $1-\alpha$ confidence interval for μ is

$$
\left[\bar{X}-t_{\alpha / 2} \frac{S}{\sqrt{n}}, \bar{X}+t_{\alpha / 2} \frac{S}{\sqrt{n}}\right]
$$

- Also written as

$$
\bar{X} \pm t_{\alpha / 2} \frac{S}{\sqrt{n}}
$$

Hypothesis Testing Conclusions

- Rejecting H_{0} means there is strong evidence that H_{0} is false.
- Not rejecting H_{0} merely means there is a lack of strong evidence against H_{0}.
There is not strong evidence in favor of anything, including H_{0}.

