Math 5305 Notes Diagnostics and Remedial Measures

Jesse Crawford

Department of Mathematics Tarleton State University

< ロ > < 同 > < 回 > < 回 >

- $Y = X\beta + \epsilon$
- p < n and X has full rank.
- *ϵ* ⊥⊥ *X*
- $\epsilon_1, \ldots, \epsilon_n$ are independent
- $E(\epsilon) = 0$
- $Var(\epsilon_i) = \sigma^2$ for all *i*
- $\epsilon_1, \ldots, \epsilon_n$ are normally distributed

Error Term Assumptions

2 Transformations of Y

3 Functional Form

4 Model Building

(Tarleton State University)

Image: A math a math

Normality of Errors Diagnostics

Quantile-Quantile Plot of residuals.

R Command: qqnorm(e)

(Tarleton State University)

< 17 ▶

-

Normality of Errors Diagnostics

Shapiro-Wilks Test on Residuals

- Null hypothesis is that the ϵ_i 's are normally distributed.
- Command: shapiro.test(e), where e is the vector of residuals.

```
Console ~/ $$
> shapiro.test(rnorm(100))
shapiro-wilk normality test
data: rnorm(100)
w = 0.9844, p-value = 0.2857
> shapiro.test(runif(100))
shapiro-wilk normality test
data: runif(100)
w = 0.9474, p-value = 0.0005579
> |
```

• Reject H_0 if *p*-value is less than α .

< ロ > < 同 > < 回 > < 回 >

• Transform Y

< ロ > < 同 > < 回 > < 回 >

Constancy of Error Variance Diagnostics

Plot |e| vs. \hat{Y} or X_i .

< 17 ▶

ъ

æ

Brown-Forsythe Test

- The null hypothesis is $Var(\epsilon_1) = \cdots = Var(\epsilon_n) = \sigma^2$.
- Divide all observations into two groups based on whether Ŷ (or X_i) is above or below a certain value.
- Define $e_{i1} = i$ th residual in group 1 and $e_{i2} = i$ th residual in group 2.
- Let n_1 and n_2 be the groups sizes, $n = n_1 + n_2$, and \tilde{e}_1 and \tilde{e}_2 be the medians of the residuals in each group.
- Define $d_{i1} = |e_{i1} \tilde{e}_1|$ and $d_{i2} = |e_{i2} \tilde{e}_2|$ for each *i*.
- Perform a two-sample *t*-test using the d_{i1} 's and d_{i2} 's.

< 回 > < 三 > < 三 >

Brown-Forsythe Test (cont)

$$t = \frac{\overline{d}_1 - \overline{d}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
$$s_p^2 = \frac{\sum_{i=1}^{n_1} (d_{i1} - \overline{d}_1)^2 + \sum_{i=1}^{n_2} (d_{i2} - \overline{d}_2)^2}{n - 2}$$

• Reject H_0 if $|t| > t_{\alpha/2}(n-2)$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constancy of Error Variance Remedial Measures

- Transform Y
- Use GLS

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Independence of Errors Diagnostics

- Were the data collected in time order?
- Durbin-Watson Test
- Sequence plot: plot $\epsilon_1, \ldots, \epsilon_n$ vs. $1, \ldots, n$.

- If data were collected in time order, and the Durbin-Watson test/sequence plot show evidence of autocorrelation, use time series analysis.
- If there is a structural reason to believe the *ε_i*'s are dependent, use GLS.

Error Term Assumptions

2 Transformations of Y

3 Functional Form

4 Model Building

(Tarleton State University)

Theorem

- Consider an OLS model $Y = X\beta + \epsilon$.
- Ch4 assumptions hold and ϵ is normally distributed.
- Then the maximum likelihood estimators for β and σ^2 are

$$\hat{eta} = (X'X)^{-1}X'Y$$
 and

$$\tilde{\sigma}^2 = \frac{1}{n} \|\boldsymbol{e}\|^2.$$

• If L is the likelihood function, then

$$-2\ln(L(\hat{\beta},\tilde{\sigma}^2)) = n\ln(2\pi) + n\ln(\|\boldsymbol{e}\|^2) - n\ln(n) + n$$

 For linear models with normal disturbance terms, maximizing likelihood is equivalent to minimizing residual sum of squares, ||e||².

Transformations of Y

- Problem: error terms not normal or have nonconstant variance.
- Possible solution: transform Y
- Assuming values of *Y* are **nonnegative**, possible transformations include

í

$$\tilde{Y}_i = \sqrt{Y_i}$$

$$\widetilde{Y}_i = \ln Y_i$$

$$\tilde{Y}_i = \frac{1}{Y_i}$$

• We would then fit the model

$$\tilde{Y} = X\beta + \epsilon$$

- Assume Y values are nonnegative. If not, add a constant to all Y values.
- Given a power parameter $\lambda \in \mathbb{R}$, the Box-Cox transformation is

$$ilde{Y} = egin{cases} Y^\lambda, & ext{if } \lambda
eq 0 \ \ln(Y), & ext{if } \lambda = 0 \end{cases}$$

The model becomes

$$\tilde{\mathbf{Y}} = \mathbf{X}\beta + \epsilon$$

• λ is estimated with maximum likelihood (least squares).

• Consider a range of values for λ , such as $-2, -1.9, -1.8, \ldots, 1.8, 1.9, 2.0$.

• For each value of λ in this range, perform the following steps.

Standardize Y as follows:

$$W_i = \begin{cases} K_1(Y_i^{\lambda} - 1), & \text{if } \lambda \neq 0\\ K_2(\ln(Y_i)), & \text{if } \lambda = 0, \end{cases}$$

where

$$K_{2} = \left(\prod_{i=1}^{n} Y_{i}\right)^{\frac{1}{n}}$$
$$K_{1} = \frac{1}{\lambda K_{2}^{\lambda-1}}.$$

Fit the model $W = X\beta + \epsilon$ and compute $||e||^2$.

• The value of λ leading to the smallest value of $||e||^2$ is the MLE.

Error Term Assumptions

2 Transformations of Y

3 Functional Form

4 Model Building

(Tarleton State University)

Overall Measures of Fit

$$R^2 = 1 - \frac{\|\boldsymbol{e}\|^2}{\|\boldsymbol{Y} - \overline{\boldsymbol{Y}}\|^2}$$

Adjusted R²

٥

$$R_a^2 = 1 - \frac{n-1}{n-p} \frac{\|\boldsymbol{e}\|^2}{\|\boldsymbol{Y} - \overline{\boldsymbol{Y}}\|^2} = 1 - \frac{\hat{\sigma}^2}{\operatorname{Var}(\boldsymbol{Y})}$$

Aikake Information Criterion

 $AIC = 2p - 2\ln(L) = 2p + n\ln(2\pi) + n\ln(||e||^2) - n\ln(n) + n$

• How R calculates AIC for linear models

$$2p + n \ln(\|e\|^2) - n \ln(n)$$

Leave One Out Cross-validation (LOOCV)

- For each i = 1, ..., n, fit a model based on the other observations 1, ..., i 1, i + 1, ..., n.
- Use this model to predict Y_i , and call this prediction \hat{Y}_i .
- Find the prediction sum of square errors (PRESS)

$$\mathsf{PRESS} = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2.$$

Delete-d Cross-validation

• Choose an integer *d* between 1 and *n*. A value that has been suggested by Shao (1997) is

$$d = n(1 - (\ln(n) - 1)^{-1}).$$

- Repeat the following process a large number (say 1000) times:
 - ► Randomly select *d* rows of the data and remove them.
 - Fit a model to the remaining n d rows.
 - ► Use this model to predict the values of *Y_i* for the removed rows.
 - Find the prediction sum of square errors

$$\mathsf{PRESS} = \sum_{\mathsf{Removed Rows}} (Y_i - \hat{Y}_i)^2.$$

 Finally, average all of these PRESS values to find a single overall PRESS value.

< 回 > < 回 > < 回 >

Diagnostics

- Plot Y vs. X_j
- Plot e vs. \hat{Y} or X_j
- Compare original model to a model with higher order terms using an *F*-test or using overall measures of fit.
- Remedial Measures
 - Transform X_i or add higher order terms.

Scatterplot of Y vs. X

• Do we need higher order terms?

Scatterplot of e vs. X

• Trend in residual plot indicates functional form is wrong.

(Tarleton State University)

Diagnostics and Remedial Measures

Fitting quadratic model

$$Y_i = \beta_1 + \beta_2 X_i + \beta_3 X_i^2 + \epsilon_i$$

≣⇒

• Scatterplot of e vs. X for quadratic model

• Lack of trend in residual plot indicates functional form is right.

• True Model: $Y_i = 50 + 5X_i + 3X_i^2 + \epsilon_i$ • Model 1: $Y_i = \beta_1 + \beta_2 X_i + \epsilon_i$ • Model 2: $Y_i = \beta_1 + \beta_2 X_i + \beta_3 X_i^2 + \epsilon_i$

3

A (10) A (10)

True Model:

 $Y_i = 50 + 5X_i + 3X_i^2 + \epsilon_i$

Call. call: $lm(formula = v \sim x)$ $lm(formula = v \sim x + I(x^2))$ Residuals: Residuals: 10 Median Min 30 Max Median Min 10 30 Мах -59.411 -21.309 0.998 20.750 67.615 -37.0814 -11.7763 0.8271 9.0966 36.9520 Coefficients: Coefficients: Estimate Std. Error t value Pr(>ltl) Estimate Std. Error t value Pr(>|t|) (Intercept) 0.7928 5.2482 0.151 0.88 (Intercept) 49.2248 4.6405 10.608 < 2e-16 34 8783 0.9022 38 657 <2e-16 *** х 6.3889 2.1208 3.012 0.00331 0.2034 13.865 < 2e-16 *** I(X^2) 2.8207

Model 1

Model 2

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0

э

ŵй

Model 1:

$$Y_i = \beta_1 + \beta_2 X_i + \epsilon_i$$

Model 2:

$$Y_i = \beta_1 + \beta_2 X_i + \beta_3 X_i^2 + \epsilon_i$$

۰

ftest(model1, model2) = 9.59×10^{-25}

• So, we reject Model 1 in favor of Model 2.

< 🗇 > < 🖻 >

Comparing the Models with Measures of Overall Fit

- R² (higher is better)
 - Model 1: 0.9385
 - Model 2: 0.9794
- Adjusted R² (higher is better)
 - Model 1: 0.9378
 - Model 2: 0.9789
- AIC (lower is better)
 - Model 1: 653.94
 - Model 2: 546.67
- Leave One Out PRESS (lower is better)
 - Model 1: 69572.47
 - Model 2: 23633.27
- SSE (||*e*||²)
 - Model 1: 66474.03
 - Model 2: 22293.14

Interaction Terms

• Consider the regression model

$$Y_i = \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \epsilon_i$$

• An interaction term is a term of the form

 $\beta_{j_1j_2}X_{ij_1}X_{ij_2}$

Example

Consider the regression model

BloodPressure_{*i*} = $\beta_0 + \beta_1$ Gender_{*i*} + β_2 Cholesterol_{*i*} + ϵ_i

 Here is the same model with an added interaction term for Gender and Cholesterol

> BloodPressure_{*i*} = $\beta_0 + \beta_1$ Gender_{*i*} + β_2 Cholesterol_{*i*} + β_{12} Gender_{*i*}Cholesterol_{*i*} + ϵ_i

Diagnostics

- Plot e vs. interaction term.
- Compare original model to a model with the interaction term using an *F*-test or using overall measures of fit.
- Remedial Measures
 - Include the interaction term if necessary.

Error Term Assumptions

2 Transformations of Y

3 Functional Form

(Tarleton State University)

< 17 ▶

- Data should be screened for errors.
- Rule of thumb: Sample size should be about 6 to 10 times as large as the number of variables in the pool of potential variables.
- Variables may need to be eliminated if they
 - are not clinically relevant
 - have large measurement errors
 - duplicate other variables
- Clinical considerations should be taken into account. Subject matter experts should be consulted.

Data cleaning/checking

- Split Data into a training sample and a validation sample (this step is not necessary if it is possible to generate new data).
 - Univariate Analyses
 - * Quantitative variables can be checked for curvature.
 - * Appropriate categories can be considered for categorical variables.
 - Variable Selection
 - Diagnostics and Remedial Measures
- Model Validation: Can be done by comparing model to
 - New data
 - Data from the validation sample

Variable Selection Methods

Manually

Stepwise Method

d=data.frame(Y=Y,X=X)
bigmodel=lm(Y~.,data=d)
stepmodel=step(bigmodel)

Best Subsets Method

```
library(bestglm)
Xy=as.data.frame(cbind(x1,x2,x3,x4,x5,x6,Y))
bestglm(Xy,family=gaussian,IC="AIC")
bestglm(Xy,family=gaussian,IC="CV",t=10)
```

• Combination: Use stepwise to narrow the list of variables and then apply best subsets to the remaining variables.

A (10) A (10)

- Models are validated by assessing their performance on a new data set.
- The new data set can actually be newly collected data or can be the validation sample that was set aside at the beginning of model building.
- Diagnostics should be used to determine if the fitted model is consistent with the new data.
- The Mean Squared Prediction Error (MSPR) should be determined
 - Let Y_i , $i = 1, ..., n^*$ be the new data set.
 - For each i, use the model fitted to the training to data to predict Y_i.
 - Call the predicted value \hat{Y}_i .
 - The MSPR is

$$MSPR = \frac{\sum_{i=1}^{n^*} (Y_i - \hat{Y}_i)^2}{n^*}.$$

< 回 > < 三 > < 三 >

```
X=matrix(runif(5000),100,50)
```

```
X0=cbind(rep(1,100),X[,1:3])
beta=c(50,5,10,30)
epsilon=rnorm(100,0,1)
Y=X0%*%beta+epsilon
```

True Model:

 $Y_i = 50 + 5X_{i1} + 10X_{i2} + 30X_{i3} + \epsilon_i$, for $i = 1, \dots, 100$. Variables X_{i4}, \dots, X_{i50} are just noise.

・ 同 ト ・ ヨ ト ・ ヨ ト

True Model:

```
Y_i = 50 + 5X_{i1} + 10X_{i2} + 30X_{i3} + \epsilon_i, for i = 1, ..., 100.
x1=X0[,2]
x2=X0[,3]
x3=X0[,4]
model=lm(Y \sim x1 + x2 + x3)
summary(model)
      Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
       (Intercept) 50.2288 0.3242 154.95 <2e-16
                                                       ***
       x1
                   4.1198 0.3828 10.76 <2e-16
                                                       ***
       х2
                    9.9273 0.3749 26.48 <2e-16
                                                       ***
       x3
                   30.2708 0.3708 81.63 <2e-16
                                                       ***
```

э.

```
d=data.frame(Y=Y,X=X)
bigmodel=lm(Y~.,data=d)
```

```
stepmodel=step(bigmodel)
summary(stepmodel)
```

Coefficient:	s:				
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	47.6880	0.8455	56.404	< 2e-16	***
×.1	3.8129	0.3426	11.129	< 2e-16	***
×.2	10.1911	0.3503	29.095	< 2e-16	***
×.3	30.6207	0.3688	83.021	< 2e-16	***
×.4	0.6246	0.3961	1.577	0.11891	
×.6	0.7788	0.3333	2.337	0.02203	¥
×.14	0.6239	0.3617	1.725	0.08848	
×.15	0.9363	0.3304	2.834	0.00584	**
×.16	-0.5682	0.3289	-1.727	0.08807	
×.21	-0.6973	0.3601	-1.936	0.05644	
×.23	0.6019	0.3580	1.681	0.09671	
X.27	0.4442	0.3254	1.365	0.17614	
×.28	-0.6381	0.3559	-1.793	0.07684	
×.30	0.9224	0.3210	2.874	0.00522	₩₩
×.35	-0.8150	0.3805	-2.142	0.03532	w
×.37	0.9491	0.3569	2.659	0.00949	¥Ж
×.41	0.9769	0.3812	2.563	0.01231	¥
×.42	0.9704	0.3344	2.902	0.00481	₩₩
×.43	-1.0106	0.3639	-2.777	0.00686	**
×.47	-0.4945	0.3286	-1.505	0.13642	
×.48	0.5735	0.3797	1.511	0.13496	
×.50	0.6709	0.3698	1.814	0.07352	
	Coefficient: (Intercept) ×.1 ×.2 ×.3 ×.4 ×.6 ×.14 ×.15 ×.16 ×.21 ×.23 ×.27 ×.28 ×.35 ×.37 ×.35 ×.37 ×.41 ×.42 ×.43 ×.47 ×.47 ×.43 ×.47 ×.45 ×.42 ×.35 ×.45 ×.21 ×.23 ×.22 ×.3 ×.24 ×.24 ×.25 ×.24 ×.25 ×.24 ×.25 ×.26 ×.26 ×.26 ×.26 ×.26 ×.26 ×.26 ×.26	coefficients: Estimate (Intercept) 47.6880 x.1 3.8129 x.2 10.1911 x.3 30.6207 x.4 0.6246 x.6 0.7788 x.14 0.6236 x.15 0.9363 x.16 -0.5682 x.21 -0.6973 x.23 0.6019 x.27 0.4442 x.35 -0.6381 x.35 -0.6381 x.35 -0.8150 x.37 0.9491 x.41 0.9769 x.42 0.9704 x.43 -1.0106 x.47 -0.4945 x.48 0.5735	$\begin{array}{llllllllllllllllllllllllllllllllllll$	coefficients: Estimate Std. Error t value (Intercept) 47.6880 0.8455 56.404 x.1 3.8129 0.3426 11.129 x.2 10.1911 0.3503 29.095 x.3 30.6207 0.3688 88.021 x.4 0.6246 0.3961 1.577 x.6 0.7788 0.3333 2.337 x.14 0.6239 0.3617 1.725 x.15 0.9363 0.3304 2.834 x.16 -0.5682 0.3269 -1.727 x.21 -0.6073 0.3601 -1.737 x.28 -0.6381 0.3550 1.681 x.27 0.4442 0.3254 1.365 x.28 -0.6381 0.3559 -2.142 x.37 0.9491 0.3562 2.2553 x.41 0.9769 0.3842 2.902 x.42 0.9704 0.3344 2.902 x.41 0.9769 0.3842 2.902<	$\begin{array}{c} \mbox{coefficients:} \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$

イロン イ理 とく ヨン イヨン

Xy=as.data.frame(cbind(X[,c(1,2,3,4,6,14,15,16,21,23,2 42,43,47,48,50)],Y))

bestmodel=bestglm(Xy,IC="CV",family=gaussian,t=10)
summary(bestmodel\$BestModel)

Coefficients:								
	Estimate	Std. Error	t value	Pr(> t)				
(Intercept)	49.7149	0.3706	134.153	<2e-16	***			
V1	4.0777	0.3719	10.963	<2e-16	***			
V2	9.8833	0.3643	27.128	<2e-16	***			
V3	30.4825	0.3689	82.634	<2e-16	***			
V15	0.9209	0.3508	2.625	0.0101	¥			

truemodel=lm(Y~x1+x2+x3)
trueYhat=predict(truemodel)

bestYhat=predict(bestmodel\$BestModel)

Kutner et. al. (2005). *Applied Linear Statistical Models, 5th ed.* McGraw-Hill/Irwin, New York, N.Y.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))