Math 5364 Homework 5

1. Create a function called splitdata that splits data into training and test sets.

- The inputs should be a dataframe data and a number trainfrac between 0 and 1 , representing the fraction of data that should be put in the training set.
- The function should return a list with components traindata and testdata, which are the training and testing sets.
- For example, the following code should split ir is into 70% training and 30% test data.

```
splitlist=splitdata(iris,.7)
traindata=splitlist$traindata
testdata=splitlist$testdata
```

- Note that the following code will not work.

```
traindata=splitdata(iris,.7) $traindata
testdata=splitdata(iris,.7) $testdata
```

The problem with this code is the random splitting will occur twice, so the training and test sets will not match.
2. Download the file wdbc.data from the Breast Cancer Wisconsin (Diagnostic) data set on the UCI Machine Learning Repository. Give a general description of the data, and determine what columns $1,2,6,16$, and 26 of this data represent.
3. (a) Now that we know what column 1 is, we know that we don't want any algorithm using this column to make predictions, so remove it from the data.
(b) Use splitdata to split the data into 70\% training and 30\% test data.
(c) Find colsums and dim of the original data and of the training and test data to verify that the splitting was done correctly.
4. (a) Use rpart to fit a tree called tree1 to this data, plot it, and calculate its training and test error rates.
(b) Use ctree to fit a tree called tree2 to this data, plot it, and calculate its training and test error rates.
(c) Intuitively, does there appear to be a statistically significant difference between the accuracies of tree1 and tree2?
(d) Test whether the difference in accuracies is statistically significant.
5. Estimate the accuracy of tree 1 using the following types of cross-validation.
(a) 10-fold cross-validation
(b) 20-fold cross-validation
(c) Leave-one-out cross-validation
(d) Delete- d cross-validation with $d=20$ and $m=100$.
(e) The bootstrap with $b=100$.

