Calculus III Review Five

1. Consider the vector field $\mathbf{F}(x, y)=x y^{2} \mathbf{i}+x^{2} y \mathbf{j}$ and the curve $\mathbf{r}(t)=\left\langle t+\sin \left(\frac{\pi}{2} t\right), t+\cos \left(\frac{\pi}{2} t\right)\right\rangle$, $0 \leq t \leq 1$.
(a) Find a function f, such that $\mathbf{F}=\nabla f$.
(b) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
2. Compute $\int_{C} y^{3} d x-x^{3} d y$, where C is the circle $x^{2}+y^{2}=4$, oriented counterclockwise.
3. Consider the vector field $\mathbf{F}(x, y, z)=x^{2} z^{2} \mathbf{i}+y^{2} z^{2} \mathbf{j}+x y z \mathbf{k}$. Let S be the part of the paraboloid $z=x^{2}+y^{2}$ lying inside the cylinder $x^{2}+y^{2}=4$, oriented upward, and evaluate \iint_{S} curl $\mathbf{F} \cdot d \mathbf{S}$.
4. Consider the vector field $\mathbf{F}(x, y, z)=x y e^{z} \mathbf{i}+x y^{2} z^{3} \mathbf{j}-y e^{z} \mathbf{k}$, and let S be the surface of the box $\{(x, y, z) \mid 0 \leq x \leq 3,0 \leq y \leq 2,0 \leq z \leq 1\}$, oriented outward. Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
