Calculus III Review Five

- 1. Consider the vector field $\mathbf{F}(x, y) = xy^2\mathbf{i} + x^2y\mathbf{j}$ and the curve $\mathbf{r}(t) = \langle t + \sin(\frac{\pi}{2}t), t + \cos(\frac{\pi}{2}t) \rangle$, $0 \le t \le 1$.
 - (a) Find a function f, such that $\mathbf{F} = \nabla f$.
 - (b) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

2. Compute $\int_C y^3 dx - x^3 dy$, where C is the circle $x^2 + y^2 = 4$, oriented counterclockwise.

3. Consider the vector field $\mathbf{F}(x, y, z) = x^2 z^2 \mathbf{i} + y^2 z^2 \mathbf{j} + xyz \mathbf{k}$. Let *S* be the part of the paraboloid $z = x^2 + y^2$ lying inside the cylinder $x^2 + y^2 = 4$, oriented upward, and evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.

4. Consider the vector field $\mathbf{F}(x, y, z) = xye^{z}\mathbf{i} + xy^{2}z^{3}\mathbf{j} - ye^{z}\mathbf{k}$, and let *S* be the surface of the box $\{(x, y, z) \mid 0 \le x \le 3, 0 \le y \le 2, 0 \le z \le 1\}$, oriented outward. Calculate $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$.