Calculus III Final Exam Review

1. Show that $x^{2}+y^{2}+z^{2}=2 x+6 y$ is the equation of a sphere, and find its center and radius.
2. Find the equation of the plane passing through the points $(1,0,4),(5,1,5)$, and $(3,2,10)$.
3. Consider the curve $\mathbf{r}(t)=\left\langle t, t^{2}, \sin (t)\right\rangle, 0 \leq t \leq \pi$.
(a) Find the length of this curve.
(b) Find the tangent line to the curve at the point $\left(\pi, \pi^{2}, 0\right)$.
4. Find the maximum and minimum values of $f(x, y, z)=x^{2} y^{2} z^{2}$ subject to the constraint $x^{2}+y^{2}+z^{2}=1$.
5. Find the tangent plane to the surface $x+y+z=e^{x y z}$ at the point $(0,0,1)$.
6. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\left\langle x+y, y-z, z^{2}\right\rangle$, and C is the curve given by $\mathbf{r}(t)=$ $\left\langle t^{2}, t^{3}, t^{2}\right\rangle, 0 \leq t \leq 1$.
7. Use Green's Theorem to evaluate $\int_{C} \cos (y) d x+x^{2} \sin (y) d y$, where C is the rectangle with vertices $(0,0),(5,0),(5,2)$, and $(0,2)$.
8. Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\left\langle 2 y \cos z, e^{x} \sin z, x e^{y}\right\rangle$, and S is the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$, oriented upward.
9. Let E be the region bound by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$, and let S be the surface of this region. Use the Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\left\langle 3 x y^{2}, x e^{z}, z^{3}\right\rangle$.
