Math 3320 Foundations of Mathematics Chapter 1: Fundamentals

Jesse Crawford

Department of Mathematics Tarleton State University

Outline

- Section 1.1: Why Study Foundations of Mathematics?
- Section 1.2: Speaking (and Writing) Mathematics
- Section 1.3: Definition
- Section 1.4: Theorem
- 6 Appendix D
- Section 1.5: Proof
- Section 1.6: Counterexample
- Section 1.7: Boolean Algebra

Is the following statement always true?

$$\lim_{n\to\infty}\int_a^b f_n(x)\ dx = \int_a^b \lim_{n\to\infty} f_n(x)\ dx$$

Example

For n = 1, 2, 3, ..., define

$$f_n(x) = \begin{cases} n & \text{, if } 0 \le x \le \frac{1}{n} \\ 0 & \text{, otherwise.} \end{cases}$$

$$\lim_{n\to\infty}\int_0^1 f_n(x)\ dx\neq \int_0^1 \lim_{n\to\infty} f_n(x)\ dx$$

The above example is a *counterexample* to the statement above.

Lebesgue's Dominated Convergence Theorem

- Let $\{f_n\}$ be a sequence of real-valued measurable functions on a measure space (S, Σ, μ) .
- Suppose that the sequence converges pointwise to a function f and is dominated by some integrable function g in the sense that

$$|f_n(x)| \leq g(x),$$

for all numbers n in the index set and all points $x \in S$.

• Then f is integrable, and

$$\lim_{n\to\infty}\int_{\mathcal{S}}f_n\ d\mu=\int_{\mathcal{S}}\lim_{n\to\infty}f_n\ d\mu.$$

Goal of this Course

- Transform from a "symbol pushing" student to one who understands foundations of mathematics.
- You will be able to understand and prove theorems like this one!

Foundations Overview

- Cornerstones of mathematics: definition, theorem, and proof.
- Mathematical concepts must be precisely defined.
- Theorems are statements about these concepts.
 - ≥ 2+2=4
 - $\frac{d}{dx}\sin(x) = \cos(x)$
 - "Two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension."
 - Lebesgue's Dominated Convergence Theorem
- Theorems must be proved according to sound logic.

Set Theory and Logic

- Set Theory:
 - ► {1,2,3}
 - $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
 - $\mathbb{P} \ \mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } b \neq 0 \}$
 - $\mathbb{R} = \{ All real numbers \}$
 - ▶ $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
- Logic
 - Boolean operators: and, or, not, if-then, if and only if, implies.
 - Words used to structure proofs: Let, assume, suppose, therefore, then
 - Logical Quantifiers:
 - Universal: for all, for every, ∀
 - ★ Existential: there exists, for some, ∃

Example

Compare these two statements:

- For all $x \in \mathbb{R}$, $x^2 = 9$.
- There exists $x \in \mathbb{R}$, such that $x^2 = 9$.

Lebesgue's Dominated Convergence Theorem

- Let $\{f_n\}$ be a sequence of real-valued measurable functions on a measure space (S, Σ, μ) .
- Suppose that the sequence converges pointwise to a function f
 and is dominated by some integrable function g in the sense that

$$|f_n(x)| \leq g(x),$$

for all numbers n in the index set and all points $x \in S$.

• Then f is integrable, and

$$\lim_{n\to\infty}\int_{S}f_n\ d\mu=\int_{S}\lim_{n\to\infty}f_n\ d\mu.$$

7 / 55

Example

What is $\lim_{x\to 0} x \sin(\frac{1}{x})$?

Definition

Let f be a function defined on some interval containing a, except possibly at a itself. Then we write

$$\lim_{x\to a} f(x) = L,$$

if, for every $\varepsilon > 0$, there exists $\delta > 0$, such that

$$0 < |x - a| < \delta \text{ implies } |f(x) - L| < \varepsilon.$$

Theorem

$$\lim_{x\to 0}x\sin(\tfrac{1}{x})=0$$

A Misconception About Proofs

- Misconception: Proofs are just about formatting the text with a specific style, because my teacher is picky!
- Reality:
 - As with any writing, it's important to be professional, but the chosen presentation format is not that big of a deal.
 - However, changing a **single word** in a proof can be extremely important, because it can change the meaning of that sentence and cause the proof to be **logically incorrect**.

Unique Features of Mathematics

- You don't rely on experiments or third party accounts in math. You can prove/disprove things.
- You don't have to take someone else's word for it.
- You can obtain (close to) certain knowledge.
- There really is a right answer, and you can determine what it is.
- Mathematics is the foundation for all science and technology, so we need logically sound methods for deriving mathematical knowledge.
- Math is a fun, puzzle-solving activity.

Outline

- Section 1.1: Why Study Foundations of Mathematics?
- Section 1.2: Speaking (and Writing) Mathematics
- Section 1.3: Definition
- Section 1.4: Theorem
- 6 Appendix D
- Section 1.5: Proof
- Section 1.6: Counterexample
- 8 Section 1.7: Boolean Algebra

Speaking and Writing Mathematics

- Precision is a top priority. We want to avoid being vague or unclear.
- Complete Sentences
 - **Bad:** 3x + 5
 - **Good:** When we substitute x = -5/3 into 3x + 5, the result is 0.
- Mismatch of Categories
 - "Air Force One is the President of the United States."
 - **Bad:** "If the legs of a right triangle T have lengths 5 and 12, then T = 30."
 - **Good:** "If the legs of a right triangle *T* have lengths 5 and 12, then the area of *T* is 30."
- Avoid Pronouns
 - Bad: "If we move everything over, then it simplifies and that's our answer."
 - Good: "When we move all terms involving x to the left in Equation (12), we find those terms cancel, and that enables us to determine the value of y."

Speaking and Writing Mathematics

- Rewrite your proofs
- Learn Latex

Outline

- Section 1.1: Why Study Foundations of Mathematics?
- Section 1.2: Speaking (and Writing) Mathematics
- Section 1.3: Definition
- Section 1.4: Theorem
- 6 Appendix D
- Section 1.5: Proof
- Section 1.6: Counterexample
- Section 1.7: Boolean Algebra

Definition (Even)

An integer is called even provided it is divisible by two.

Definition (Even)

An integer is called even provided it is divisible by two.

- For this definition to make sense, we need to define the terms in red.
- That would require us to define even more terms.

:

Eventually we hit the foundation: Set Theory (Chapter 2)

Our Starting Point: The Integers

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

You may use the following freely in any proof:

- Algebraic properties of addition, subtraction, and multiplication (not division).
- Basic number facts like $3 \times 2 = 6$.
- Basic facts about the order relations $(<, \le, >, \ge)$.
- For specific details, see Appendix D.

Definition (Even)

An integer is called even provided it is divisible by two.

Definition (Divisible)

- Let a and b be integers.
- We say that a is divisible by b provided there is an integer c, such that bc = a.
- We also say that *b divides a*, or *b* is a *factor* of *a*, or *b* is a *divisor* of *a*.
- The notation for this is b|a.

Definition (Even)

An integer is called *even* provided it is divisible by two.

Definition (Odd)

An integer a is called *odd* provided there is an integer x, such that a = 2x + 1.

Definition (Prime)

An integer p is *prime* provided that p > 1 and the only positive divisors of p are 1 and p.

Definition (Composite)

A positive integer a is *composite* provided there is an integer b, such that 1 < b < a, and b|a.

General Form of a Definition

An object X is called the *term being defined* provided it satisfies *specific conditions*.

Homework

• **To Turn In:** p. 6 (1–7, 9, 12, 13a)

• To Discuss: p. 6 (1cefg, 2, 3ce, 4, 9, 12abc)

Outline

- Section 1.1: Why Study Foundations of Mathematics?
- Section 1.2: Speaking (and Writing) Mathematics
- Section 1.3: Definition
- Section 1.4: Theorem
- 6 Appendix D
- Section 1.5: Proof
- Section 1.6: Counterexample
- 8 Section 1.7: Boolean Algebra

A *theorem* is a declarative statement about mathematics for which there is a proof.

- Declarative: Not a command, not a question.
- Theorems are true.

The Pythagorean Theorem

If a and b are the lengths of the legs of a right triangle, and c is the length of the hypotenuse, then

$$a^2 + b^2 = c^2$$

Other Names for Theorems

- Fact: 6 + 3 = 9
- Proposition/Result: A minor theorem
- Lemma: Theorem primarily used to prove another theorem
- Corollary: Theorem that follows immediately from another
- Claim: Theorem often used inside of the proof of another theorem

A False Statement

For any real number x,

$$\sqrt{x^2} = x$$
.

A Nonsense Statement

The square root of a triangle is a circle.

A *conjecture* is a statement about mathematics whose truth is unknown.

Goldbach's Conjecture

Every even integer greater than 2 can be expressed as the sum of two primes.

If-Then

"If John mows my lawn, I will pay him \$20."

Truth Table for If-Then

Α	В	If A, then B.
Т	Т	Т
Т	F	F
F	Т	T
F	F	T

Other Names for "If A, then B."

- A implies B.
- \bullet $A \Rightarrow B$
- B ← A

- Whenever A is true, B is true.
- A is sufficient for B.
- B is necessary for A.

If-Then

"If John mows my lawn, I will pay him \$20."

Truth Table for If-Then

Α	В	If A, then B.
T	Т	Т
Т	F	F
F	Т	T
F	F	Т

Example

- The sum of two even integers is even.
- All trucks are vehicles.
- All vehicles are trucks.
- All nonvehicles are nontrucks.
- All differentiable functions are continuous.

Contrapositive and Converse

Assume the statement, "If A, then B," is true.

- Contrapositive: "If not B, then not A."
- The contrapositive is logically equivalent to the original statement, so it is also true.
- Converse: "If B, then A."
- The converse is not logically equivalent to the original statement, so it may or may not be true.

If and Only If

- If x is an even integer, then x + 1 is an odd integer.
- If x + 1 is an odd integer, then x is an even integer.
- x is an even integer **if and only if** x + 1 is an odd integer.

"I will pay John \$20, if and only if he mows my lawn."

Truth Table for If and Only If

Α	В	A if and only if B .
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

If and Only If

Other Names for If and Only If

- A iff B.
- A ⇔ B
- A is necessary and sufficient for B.
- A is equivalent to B.

Truth Table for And

Α	В	A and B.
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Example

Which of these statements is true?

- 2+2=4 and $\frac{d}{dx}\sin(x)=\cos(x)$
- 3|15 and 1 is prime.
- 6 is an odd integer and 7 is a composite integer
- If x and y are integers such that $x^2 + y^2 = 0$, then x = 0 and y = 0.

Truth Table for Or

Α	В	<i>A</i> or <i>B</i> .
Т	Т	T
Т	F	T
F	Т	T
F	F	F

Example

Which of these statements is true?

- 2+2=4 or $\frac{d}{dx}\sin(x)=\cos(x)$
- 3|15 or 1 is prime.
- 6 is an odd integer or 7 is a composite integer
- If x and y are integers such that xy = 0, then x = 0 or y = 0.

Truth Table for Not

Α	Not A
Т	F
F	Т

Example

Which of these statements is true?

- It is not the case that $\frac{d}{dx}e^x = \cos(x)$
- 4 does not divide 20.

Contrapositives and Converses Revisited

Α	В	$A \Rightarrow B$
Т	Т	Т
Т	F	F
F	Т	T
F	F	T

- Contrapositive: (not B) \Rightarrow (not A)
- Converse: $B \Rightarrow A$

Example

- Construct truth tables for the contrapositive and converse.
- This approach will help your with homework problems 4 and 6.

Vacuous Truth

Definition

- Consider the statement, "If A then B".
- If it is impossible for *A* to be true, then the above statement is true.
- In this case, it is called vacuously true.

Example

- If an integer is both a perfect square and prime, then it is negative.
- If Santa Claus mows my lawn, I will pay him \$1,000,000.
- All of my children are Nobel Prize winners.
- All of my children are convicted felons.

Homework

• To Turn In: p. 13 (1, 2, 4, 6, 7, 10, 12ace)

• To Discuss: p. 13 (1ab, 2ac, 4, 10, 12ce)

36 / 55

- Section 1.1: Why Study Foundations of Mathematics?
- Section 1.2: Speaking (and Writing) Mathematics
- Section 1.3: Definition
- Section 1.4: Theorem
- Sample of the second of the
- 6 Section 1.5: Proof
- Section 1.6: Counterexample
- Section 1.7: Boolean Algebra

Our Starting Point: The Integers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

You may use the following freely in any proof:

 Algebraic properties of addition, subtraction, and multiplication (not division).

38 / 55

- Basic number facts like $3 \times 2 = 6$.
- Basic facts about the order relations $(<, \le, >, \ge)$.
- For specific details, see Appendix D.

Some Properties of the Integers

There exists a set \mathbb{Z} called the **integers**, and binary operations defined on \mathbb{Z} called **addition** and **multiplication** (denoted x+y and xy), satisfying the following conditions:

For any integers x, y, and z,

- Closure Property: x + y and xy are also integers
- Commutative Properties: x + y = y + x, and xy = yx
- Associative Properties: x + (y + z) = (x + y) + z and x(yz) = (xy)z
- Distributive Property: x(y+z) = xy + xz

Additive Identity: There exists an integer 0, such that x + 0 = x, for any integer x.

Additive Inverse: For any integer x, there exists an integer -x, such that x + (-x) = 0.

Multiplicative Identity: There exists an integer 1, such that 1x = x, for any integer x.

Some Properties of the Order Relations $<,>,\leq,\geq$

Let a, b, c, and d be integers.

- If a < b and c < d, then a + c < b + d.
- Let x be a positive integer. Then a < b if and only if ax < bx.
- Transitive Property: If a < b, and b < c, then a < c.
- The above properties are all true for >, \le , and \ge also.

- Section 1.1: Why Study Foundations of Mathematics?
- Section 1.2: Speaking (and Writing) Mathematics
- Section 1.3: Definition
- Section 1.4: Theorem
- 6 Appendix D
- 6 Section 1.5: Proof
- Section 1.6: Counterexample
- Section 1.7: Boolean Algebra

Proposition 5.2

The sum of two even integers is even.

Proof Template 1: Direct Proof of an If Then statement.

To prove the statement, "If A, then B"

Assume A

:

Make logical deductions

:

Conclude B

Proposition 5.3

Let a, b, and c be integers. If a|b and b|c, then a|c.

What can we say about $x^3 + 1$ if x is a positive integer? Prime or composite?

$$1^{3} + 1 = 2$$
 $2^{3} + 1 = 9$
 $3^{3} + 1 = 28$
 $4^{3} + 1 = 65$
 $5^{3} + 1 = 126$

Proposition 5.4

Let x be an integer. If x > 1, then $x^3 + 1$ is composite.

Proposition 5.5

Let x be an integer. Then x is even if and only if x + 1 is odd.

Proof Template 2: Direct Proof of an If and Only If Statement.

To prove the statement, "A iff B"

- (\Rightarrow) Prove "If A, then B"
- (\Leftarrow) Prove "If B, then A"

Homework

• To Turn In: p. 22 (1-3, 5, 7-9, 15, 20, 24)

• To Discuss: p. 22 (1, 3, 7, 15, 20, 24)

- Section 1.1: Why Study Foundations of Mathematics?
- Section 1.2: Speaking (and Writing) Mathematics
- Section 1.3: Definition
- Section 1.4: Theorem
- Appendix D
- 6 Section 1.5: Proof
- Section 1.6: Counterexample
- 8 Section 1.7: Boolean Algebra

False Statement

Let a and b be integers. If a|b and b|a, then a=b.

Proof Template 3: Refuting a False If-Then Statement with a Counterexample

- To disprove a statement of the form "If A, then B"
- Find an instance where A is true but B is false.

Example

Disprove: If p and q are prime, then p + q is composite.

47 / 55

- Section 1.1: Why Study Foundations of Mathematics?
- Section 1.2: Speaking (and Writing) Mathematics
- Section 1.3: Definition
- Section 1.4: Theorem
- Appendix D
- 6 Section 1.5: Proof
- Section 1.6: Counterexample
- Section 1.7: Boolean Algebra

 $TRUE \land TRUE = TRUE$

TRUE \land FALSE = FALSE

 $\mathtt{FALSE} \land \mathtt{TRUE} = \mathtt{FALSE}$

 $FALSE \land FALSE = FALSE$

Truth Table for ∧

X	У	$x \wedge y$
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	FALSE
FALSE	FALSE	FALSE

TRUE V TRUE = TRUE

TRUE V FALSE = TRUE

FALSE V TRUE = TRUE

 $FALSE \lor FALSE = FALSE$

Truth Table for ∨

X	У	$x \vee y$
TRUE	TRUE	TRUE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE

Not

$$\neg \texttt{TRUE} = \texttt{FALSE}$$

$$\neg \texttt{FALSE} = \texttt{TRUE}$$

Truth Table for ¬

X	$\neg x$	
TRUE	FALSE	
FALSE	TRUE	

Example

Calculate the value of

TRUE
$$\wedge$$
 ((\neg FALSE) \vee FALSE)

Proposition 7.1: DeMorgan's Law

The Boolean expressions $\neg(x \land y)$ and $(\neg x) \lor (\neg y)$ are logically equivalent.

Proof Template 4: Truth Table of Logical Equivalence

To show that two Boolean expressions are logically equivalent:

- Construct a truth table showing the values of the two expressions for all possible values of the variables.
- Check to see that the two Boolean expressions always have the same value.

Theorem 7.2: Properties of Boolean Expressions

- $x \wedge y = y \wedge x$ and $x \vee y = y \vee x$
- $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ and $(x \vee y) \vee z = x \vee (y \vee z)$
- $x \land \text{TRUE} = x \text{ and } x \lor \text{FALSE} = x$
- $\neg (\neg x) = x$
- $x \wedge x = x$ and $x \vee x = x$
- $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ and $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$
- $x \wedge (\neg x) = \text{FALSE} \text{ and } x \vee (\neg x) = \text{TRUE}$

Truth Table for \rightarrow

X	У	$X \rightarrow Y$
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	TRUE
FALSE	FALSE	TRUE

Truth Table for ↔

X	У	$x \leftrightarrow y$
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	FALSE
FALSE	FALSE	TRUE

54 / 55

Homework

- To Turn In: p. 24 (1-4, 6, 9b, 11) and p. 28 (1, 3, 11b, 13b)
- To Discuss: p. 24 (1, 3, 6, 9b) and p. 28 (1bc, 3, 11b)