Math 3320 Foundations of Mathematics Chapter 1: Fundamentals

Jesse Crawford

Department of Mathematics Tarleton State University

Outline

[Section 1.1: Why Study Foundations of Mathematics?](#page-1-0)

- [Section 1.2: Speaking \(and Writing\) Mathematics](#page-10-0)
- [Section 1.3: Definition](#page-13-0)
- [Section 1.4: Theorem](#page-20-0)
- [Appendix D](#page-36-0)
- [Section 1.5: Proof](#page-40-0)
- [Section 1.6: Counterexample](#page-45-0)
- [Section 1.7: Boolean Algebra](#page-47-0)

Is the following statement always true?

$$
\lim_{n\to\infty}\int_a^b f_n(x) \ dx = \int_a^b \lim_{n\to\infty} f_n(x) \ dx
$$

Example

For $n = 1, 2, 3, \ldots$, define

$$
f_n(x) = \begin{cases} n, & \text{if } 0 \leq x \leq \frac{1}{n} \\ 0, & \text{otherwise.} \end{cases}
$$

$$
\lim_{n\to\infty}\int_0^1f_n(x)\,dx\neq\int_0^1\lim_{n\to\infty}f_n(x)\,dx
$$

The above example is a *counterexample* to the statement above.

(Tarleton State University) [Chapter 1](#page-0-0) 3/55

Lebesgue's Dominated Convergence Theorem

- \bullet Let $\{f_n\}$ be a sequence of real-valued measurable functions on a measure space (S, Σ, μ) .
- Suppose that the sequence converges pointwise to a function *f* and is dominated by some integrable function *g* in the sense that

 $|f_n(x)| \leq g(x),$

for all numbers *n* in the index set and all points $x \in S$.

Then *f* is integrable, and

$$
\lim_{n\to\infty}\int_{S}f_n d\mu=\int_{S}\lim_{n\to\infty}f_n d\mu.
$$

Goal of this Course

- **•** Transform from a "symbol pushing" student to one who understands foundations of mathematics.
- You will be able to understand and prove theorems like this one!

Foundations Overview

- Cornerstones of mathematics: definition, theorem, and proof.
- Mathematical concepts must be precisely **defined**.
- **Theorems** are statements about these concepts.

$$
\blacktriangleright \ 2+2=4
$$

$$
= \frac{d}{dx} \sin(x) = \cos(x)
$$

"Two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension."

Lebesgue's Dominated Convergence Theorem

Theorems must be **proved** according to sound logic.

Set Theory and Logic

- Set Theory:
	- \blacktriangleright {1, 2, 3} $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ $\mathbb{Q} = \{\frac{a}{b}, a, b \in \mathbb{Z} \text{ and } b \neq 0\}$ $\blacksquare \mathbb{R} = \{ \text{All real numbers} \}$ \triangleright [*a*, *b*] = {*x* ∈ ℝ | *a* < *x* < *b*}

• Logic

- Boolean operators: and, or, not, if-then, if and only if, implies.
- Words used to structure proofs: Let, assume, suppose, therefore, then
- Logical Quantifiers:
	- Universal: for all, for every, \forall
		- ^F Existential: there exists, for some, ∃

Example

Compare these two statements:

• For all
$$
x \in \mathbb{R}
$$
, $x^2 = 9$.

• There exists
$$
x \in \mathbb{R}
$$
, such that $x^2 = 9$.

Lebesgue's Dominated Convergence Theorem

- \bullet Let $\{f_n\}$ be a sequence of real-valued measurable functions on a measure space (S, Σ, μ) .
- Suppose that the sequence converges pointwise to a function *f* and is dominated by some integrable function *g* in the sense that

 $|f_n(x)| < g(x)$,

for all numbers *n* in the index set and all points $x \in S$.

Then *f* is integrable, and

$$
\lim_{n\to\infty}\int_{S}f_n d\mu=\int_{S}\lim_{n\to\infty}f_n d\mu.
$$

Example

What is
$$
\lim_{x \to 0} x \sin(\frac{1}{x})
$$
?

Definition

Let *f* be a function defined on some interval containing *a*, except possibly at *a* itself. Then we write

$$
\lim_{x\to a}f(x)=L,
$$

if, for every $\varepsilon > 0$, there exists $\delta > 0$, such that

$$
0<|x-a|<\delta \text{ implies } |f(x)-L|<\varepsilon.
$$

Theorem

$$
\lim_{x\to 0}x\sin(\tfrac{1}{x})=0
$$

A Misconception About Proofs

- Misconception: Proofs are just about formatting the text with a specific style, because my teacher is picky!
- Reality:
	- As with any writing, it's important to be professional, but the chosen presentation format is not that big of a deal.
	- ^I However, changing a **single word** in a proof can be extremely important, because it can change the meaning of that sentence and cause the proof to be **logically incorrect**.

Unique Features of Mathematics

- You don't rely on experiments or third party accounts in math. You can prove/disprove things.
- You don't have to take someone else's word for it.
- You can obtain (close to) certain knowledge.
- There really is a right answer, and you can determine what it is.
- Mathematics is the foundation for all science and technology, so we need logically sound methods for deriving mathematical knowledge.
- Math is a fun, puzzle-solving activity.

Outline

[Section 1.1: Why Study Foundations of Mathematics?](#page-1-0)

[Section 1.2: Speaking \(and Writing\) Mathematics](#page-10-0)

- [Section 1.3: Definition](#page-13-0)
- [Section 1.4: Theorem](#page-20-0)
- [Appendix D](#page-36-0)
- [Section 1.5: Proof](#page-40-0)
- [Section 1.6: Counterexample](#page-45-0)
- [Section 1.7: Boolean Algebra](#page-47-0)

Speaking and Writing Mathematics

- Precision is a top priority. We want to avoid being vague or unclear.
- **Complete Sentences**
	- **Bad:** $3x + 5$
		- **Good:** When we substitute $x = -5/3$ into $3x + 5$, the result is 0.
- Mismatch of Categories
	- "Air Force One is the President of the United States."
	- **Bad:** "If the legs of a right triangle T have lengths 5 and 12, then $T = 30$."
		- **Good:** "If the legs of a right triangle T have lengths 5 and 12, then the area of *T* is 30."

Avoid Pronouns

- **Bad:** "If we move everything over, then it simplifies and that's our answer."
- **Good:** "When we move all terms involving x to the left in Equation (12), we find those terms cancel, and that enables us to determine the value of *y*."

Speaking and Writing Mathematics

- Rewrite your proofs
- **•** Learn Latex

Outline

- [Section 1.1: Why Study Foundations of Mathematics?](#page-1-0)
- [Section 1.2: Speaking \(and Writing\) Mathematics](#page-10-0)
- [Section 1.3: Definition](#page-13-0)
- [Section 1.4: Theorem](#page-20-0)
- [Appendix D](#page-36-0)
- [Section 1.5: Proof](#page-40-0)
- [Section 1.6: Counterexample](#page-45-0)
- [Section 1.7: Boolean Algebra](#page-47-0)

Definition (Even)

An integer is called *even* provided it is divisible by two.

Definition (Even)

An integer is called *even* provided it is divisible by two.

• For this definition to make sense, we need to define the terms in red.

. . .

• That would require us to define even more terms.

Eventually we hit the foundation: **Set Theory** (Chapter 2)

Our Starting Point: The Integers

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}
$$

You may use the following freely in any proof:

- Algebraic properties of addition, subtraction, and multiplication (not division).
- Basic number facts like $3 \times 2 = 6$.
- Basic facts about the order relations $(<, <, >, >)$.
- **For specific details, see Appendix D.**

Definition (Even)

An integer is called *even* provided it is divisible by two.

Definition (Divisible)

- Let *a* and *b* be integers.
- We say that *a* is *divisible* by *b* provided there is an integer *c*, such that $bc = a$.
- We also say that *b divides a*, or *b* is a *factor* of *a*, or *b* is a *divisor* of *a*.
- The notation for this is *b*|*a*.

Definition (Even)

An integer is called *even* provided it is divisible by two.

Definition (Odd)

An integer *a* is called *odd* provided there is an integer *x*, such that $a = 2x + 1$.

Definition (Prime)

An integer p is *prime* provided that $p > 1$ and the only positive divisors of *p* are 1 and *p*.

Definition (Composite)

A positive integer *a* is *composite* provided there is an integer *b*, such that $1 < b < a$, and $b|a$.

General Form of a Definition

An object *X* is called the *term being defined* provided it satisfies *specific conditions*.

Homework

To Turn In: p. 6 (1–7, 9, 12, 13a)

To Discuss: p. 6 (1cefg, 2, 3ce, 4, 9, 12abc)

Outline

- [Section 1.1: Why Study Foundations of Mathematics?](#page-1-0)
- [Section 1.2: Speaking \(and Writing\) Mathematics](#page-10-0)
- [Section 1.3: Definition](#page-13-0)
- [Section 1.4: Theorem](#page-20-0)
- [Appendix D](#page-36-0)
- 6 [Section 1.5: Proof](#page-40-0)
- [Section 1.6: Counterexample](#page-45-0)
- [Section 1.7: Boolean Algebra](#page-47-0)

A *theorem* is a declarative statement about mathematics for which there is a proof.

- Declarative: Not a command, not a question.
- **•** Theorems are true.

The Pythagorean Theorem

If *a* and *b* are the lengths of the legs of a right triangle, and *c* is the length of the hypotenuse, then

$$
a^2+b^2=c^2
$$

Other Names for Theorems

- **Fact:** $6 + 3 = 9$
- **Proposition/Result:** A minor theorem
- **Lemma:** Theorem primarily used to prove another theorem
- **Corollary:** Theorem that follows immediately from another
- **Claim:** Theorem often used inside of the proof of another theorem

A False Statement

For any real number *x*,

$$
\sqrt{x^2} = x.
$$

A Nonsense Statement

The square root of a triangle is a circle.

A *conjecture* is a statement about mathematics whose truth is unknown.

Goldbach's Conjecture

Every even integer greater than 2 can be expressed as the sum of two primes.

If-Then

"If John mows my lawn, I will pay him \$20."

Truth Table for If-Then

Other Names for "If A, then B."

- *A* implies *B*.
- $A \Rightarrow B$
- $B \leftarrow A$
- Whenever *A* is true, *B* is true.
- *A* is sufficient for *B*.
- *B* is necessary for *A*.

If-Then

"If John mows my lawn, I will pay him \$20."

Truth Table for If-Then

Example

- The sum of two even integers is even.
- All trucks are vehicles.
- All vehicles are trucks.
- All nonvehicles are nontrucks.
- All differentiable functions are continuous.

Contrapositive and Converse

Assume the statement, "If *A*, then *B*," is true.

- **Contrapositive:** "If not *B*, then not *A*."
- The contrapositive is logically equivalent to the original statement, so it is also true.
- **Converse:** "If *B*, then *A*."
- The converse is not logically equivalent to the original statement, so it may or may not be true.

If and Only If

- If x is an even integer, then $x + 1$ is an odd integer.
- If $x + 1$ is an odd integer, then x is an even integer.
- *x* is an even integer **if and only if** $x + 1$ is an odd integer.

"I will pay John \$20, if and only if he mows my lawn."

Other Names for If and Only If

- *A* iff *B*.
- *A* ⇔ *B*
- *A* is necessary and sufficient for *B*.
- *A* is equivalent to *B*.

And

Example

Which of these statements is true?

$$
2 + 2 = 4 \text{ and } \frac{d}{dx} \sin(x) = \cos(x)
$$

- 3|15 and 1 is prime.
- 6 is an odd integer and 7 is a composite integer
- If *x* and *y* are integers such that $x^2 + y^2 = 0$, then $x = 0$ and $y = 0$.

Truth Table for Or

Example

Which of these statements is true?

$$
2 + 2 = 4 \text{ or } \frac{d}{dx} \sin(x) = \cos(x)
$$

- 3|15 or 1 is prime.
- 6 is an odd integer or 7 is a composite integer
- If x and y are integers such that $xy = 0$, then $x = 0$ or $y = 0$.

Truth Table for Not

Example

Which of these statements is true?

- It is not the case that $\frac{d}{dx}e^x = \cos(x)$
- 4 does not divide 20.

- **Contrapositive:** (not *B*) ⇒ (not *A*)
- **Converse:** *B* ⇒ *A*

Example

- Construct truth tables for the contrapositive and converse.
- This approach will help your with homework problems 4 and 6.

Definition

- Consider the statement, "If *A* then *B*".
- If it is impossible for *A* to be true, then the above statement is true.
- In this case, it is called *vacuously* true.

Example

- If an integer is both a perfect square and prime, then it is negative.
- If Santa Claus mows my lawn, I will pay him \$1,000,000.
- All of my children are Nobel Prize winners.
- All of my children are convicted felons.

Homework

To Turn In: p. 13 (1, 2, 4, 6, 7, 10, 12ace)

To Discuss: p. 13 (1ab, 2ac, 4, 10, 12ce)

Outline

- [Section 1.1: Why Study Foundations of Mathematics?](#page-1-0)
- [Section 1.2: Speaking \(and Writing\) Mathematics](#page-10-0)
- [Section 1.3: Definition](#page-13-0)
- [Section 1.4: Theorem](#page-20-0)
- [Appendix D](#page-36-0)
- [Section 1.5: Proof](#page-40-0)
- [Section 1.6: Counterexample](#page-45-0)
- [Section 1.7: Boolean Algebra](#page-47-0)

Our Starting Point: The Integers

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}
$$

You may use the following freely in any proof:

- Algebraic properties of addition, subtraction, and multiplication (not division).
- Basic number facts like $3 \times 2 = 6$.
- Basic facts about the order relations $(<, <, >, >)$.
- **•** For specific details, see Appendix D.

Some Properties of the Integers

There exists a set $\mathbb Z$ called the **integers**, and binary operations defined on $\mathbb Z$ called **addition** and **multiplication** (denoted $x + y$ and xy), satisfying the following conditions:

For any integers *x*, *y*, and *z*,

- **Closure Property:** $x + y$ and xy are also integers
- **Commutative Properties:** $x + y = y + x$, and $xy = yx$
- **Associative Properties:** $x + (y + z) = (x + y) + z$ and $x(yz) = (xy)z$
- **Distributive Property:** $x(y + z) = xy + xz$

Additive Identity: There exists an integer 0, such that $x + 0 = x$, for any integer *x*.

Additive Inverse: For any integer *x*, there exists an integer −*x*, such that $x + (-x) = 0$.

Multiplicative Identity: There exists an integer 1, such that $1x = x$, for any integer *x*.

Some Properties of the Order Relations <, >, ≤, ≥

- Let *a*, *b*, *c*, and *d* be integers.
	- \bullet If $a < b$ and $c < d$, then $a + c < b + d$.
	- Let *x* be a positive integer. Then *a* < *b* if and only if *ax* < *bx*.
	- **Transitive Property:** If *a* < *b*, and *b* < *c*, then *a* < *c*.
	- The above properties are all true for $>,\le$, and \ge also.

Outline

- [Section 1.1: Why Study Foundations of Mathematics?](#page-1-0)
- [Section 1.2: Speaking \(and Writing\) Mathematics](#page-10-0)
- [Section 1.3: Definition](#page-13-0)
- [Section 1.4: Theorem](#page-20-0)
- [Appendix D](#page-36-0)
- 6 [Section 1.5: Proof](#page-40-0)
- [Section 1.6: Counterexample](#page-45-0)
- [Section 1.7: Boolean Algebra](#page-47-0)

Proposition 5.2

The sum of two even integers is even.

Proof Template 1: Direct Proof of an If Then statement.

To prove the statement, "If *A*, then *B*"

Assume *A* . . . Make logical deductions .

. . Conclude *B*

Proposition 5.3

Let *a*, *b*, and *c* be integers. If *a*|*b* and *b*|*c*, then *a*|*c*.

What can we say about x^3+1 if x is a positive integer? Prime or composite?

$$
13 + 1 = 2
$$

\n
$$
23 + 1 = 9
$$

\n
$$
33 + 1 = 28
$$

\n
$$
43 + 1 = 65
$$

\n
$$
53 + 1 = 126
$$

Proposition 5.4

Let *x* be an integer. If $x > 1$, then $x^3 + 1$ is composite.

(Tarleton State University) **[Chapter 1](#page-0-0) Chapter 1** 43 / 55

Proposition 5.5

Let x be an integer. Then x is even if and only if $x + 1$ is odd.

Proof Template 2: Direct Proof of an If and Only If Statement. To prove the statement, "*A* iff *B*" \bullet (\Rightarrow) Prove "If *A*, then *B*" \bullet (\Leftarrow) Prove "If *B*, then *A*"

Homework

To Turn In: p. 22 (1–3, 5, 7–9, 15, 20, 24)

To Discuss: p. 22 (1, 3, 7, 15, 20, 24)

Outline

- [Section 1.1: Why Study Foundations of Mathematics?](#page-1-0)
- [Section 1.2: Speaking \(and Writing\) Mathematics](#page-10-0)
- [Section 1.3: Definition](#page-13-0)
- [Section 1.4: Theorem](#page-20-0)
- [Appendix D](#page-36-0)
- 6 [Section 1.5: Proof](#page-40-0)
- [Section 1.6: Counterexample](#page-45-0)
- [Section 1.7: Boolean Algebra](#page-47-0)

False Statement

Let *a* and *b* be integers. If $a|b$ and $b|a$, then $a = b$.

Proof Template 3: Refuting a False If-Then Statement with a **Counterexample**

- To disprove a statement of the form "If *A*, then *B*"
- Find an instance where *A* is true but *B* is false.

Example

Disprove: If p and q are prime, then $p + q$ is composite.

Outline

- [Section 1.1: Why Study Foundations of Mathematics?](#page-1-0)
- [Section 1.2: Speaking \(and Writing\) Mathematics](#page-10-0)
- [Section 1.3: Definition](#page-13-0)
- [Section 1.4: Theorem](#page-20-0)
- [Appendix D](#page-36-0)
- [Section 1.5: Proof](#page-40-0)
- [Section 1.6: Counterexample](#page-45-0)
- [Section 1.7: Boolean Algebra](#page-47-0)

TRUE \wedge TRUE = TRUE $TRUE \wedge FALSE = FALSE$ $FALSE \wedge TRUE = FALSE$ $FALSE \wedge FALSE = FALSE$

Truth Table for ∧

TRUE V TRUE = TRUE TRUE \vee FALSE = TRUE $FALSE$ V TRUE = TRUE $FALSE$ V $FALSE$ $=$ $FALSE$

Truth Table for ∨

\neg TRUE = FALSE \neg FALSE = TRUE

Example

Calculate the value of

TRUE \wedge ((\neg FALSE) \vee FALSE)

Proposition 7.1: DeMorgan's Law

The Boolean expressions $\neg(x \land y)$ and $(\neg x) \lor (\neg y)$ are logically equivalent.

Proof Template 4: Truth Table of Logical Equivalence

To show that two Boolean expressions are logically equivalent:

- Construct a truth table showing the values of the two expressions for all possible values of the variables.
- Check to see that the two Boolean expressions always have the same value.

Theorem 7.2: Properties of Boolean Expressions

\n- \n
$$
x \wedge y = y \wedge x
$$
 and $x \vee y = y \vee x$ \n
\n- \n $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ and $(x \vee y) \vee z = x \vee (y \vee z)$ \n
\n- \n $x \wedge \text{TRUE} = x$ and $x \vee \text{FALSE} = x$ \n
\n- \n $\neg(\neg x) = x$ \n
\n- \n $x \wedge x = x$ and $x \vee x = x$ \n
\n- \n $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ and $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ \n
\n- \n $x \wedge (\neg x) = \text{FALSE and } x \vee (\neg x) = \text{TRUE}$ \n
\n- \n $\neg(x \wedge y) = (\neg x) \vee (\neg y)$ and $\neg(x \vee y) = (\neg x) \wedge (\neg y)$ \n
\n

Truth Table for →

Homework

- **To Turn In:** p. 24 (1–4, 6, 9b, 11) and p. 28 (1, 3, 11b, 13b)
- **To Discuss:** p. 24 (1, 3, 6, 9b) and p. 28 (1bc, 3, 11b)