Math 3320 Foundations of Mathematics Chapter 3: Counting and Relations

Jesse Crawford

Department of Mathematics Tarleton State University

2) Section 15: Equivalence Relations

3 Section 16: Partitions

Definition

- A relation R is a set of ordered pairs.
- Let A and B be sets. We say R is a relation from A to B if

 $R \subseteq A \times B$.

• We say *R* is a relation on *A* if

 $R \subseteq A \times A$.

Definition

Let *R* be a relation. The *inverse* of *R*, denoted R^{-1} , is the relation formed by reversing the order of all the ordered pairs in *R*.

$$R^{-1} = \{(x, y) \mid (y, x) \in R\}.$$

Definition (Properties of Relations)

Let *R* be a relation on a set *A*.

- If $\forall x \in A : xRx$, we call *R* reflexive.
- If $\forall x \in A : x \not R x$, we call *R* irreflexive.
- If $\forall x, y \in A : xRy \Rightarrow yRx$, we call *R* symmetric.
- If $\forall x, y \in A : (xRy \land yRx) \Rightarrow x = y$, we call *R* antisymmetric.
- If $\forall x, y, z \in A : (xRy \land yRz) \Rightarrow xRz$, we call *R* transitive.

Example

- Which of the above properties does the relation = satisfy?
- Which of the above properties does the relation \leq satisfy?

Homework

• To Turn In: p. 76 (1ab, 2a, 4, 6, 7ac, 9, 10, 14, 15)

• To Discuss: p. 76 (1a, 4, 6abf, 7a, 9, 10, 14, 15)

Section 14: Relations

2 Section 15: Equivalence Relations

Definition (Equivalence Relation)

Let R be a relation. We say R is an equivalence relation provided it is

- reflexive,
- symmetric,
- transitive.

Definition

Let n be a positive integer. We say that *integers* x and y are *congruent modulo* n, and we write

$$x \equiv y \pmod{n}$$

if n|(x - y).

Proposition

- Congruence (mod n) is an equivalence relation.
- $x \equiv 0 \pmod{2}$ iff x is even

•
$$x \equiv 1 \pmod{2}$$
 iff x is odd

(Tarleton State University)

Chapter 3

Definition (Equivalence Classes)

Let *R* be an equivalence relation on a set *A*, and let $a \in A$. The *equivalence class of a*, denoted [*a*], is

$$[a] = \{x \in A \mid xRa\}.$$

```
Proposition
Let [a] be an equivalence class.

• a \in [a]

• If b \in [a], then [a] = [b].
```

Proposition

Let R be an equivalence relation on a set A. The equivalence classes of R are nonempty, pairwise disjoint subsets of A whose union is A.

Homework

• To Turn In: p. 83 (1ab, 3, 7, 8abd, 11)

• To Discuss: p. 83 (1a, 3acg, 7ad, 8ab, 11)

Section 14: Relations

2 Section 15: Equivalence Relations

Definition

Let *A* be a set. A *partition of A* is a set of nonempty, pairwise disjoint sets whose union is *A*.

Example

Let $A = \{1, 2, 3, 4, 5, 6\}$. Which of the following are partitions?

- $\{\{1,2\},\{3\},\{4,5,6\}\}$
- $\{\{1, 2, 3, 4\}, \{3, 4, 5, 6\}\}$
- $\{\{1, 2, 3\}, \{4\}, \{5\}\}$
- $\{\{\}, \{1,4\}, \{2,3,5,6\}\}$
- {{1,2,3,4,5,6}}
- $A = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}$

Proposition

Let R be an equivalence relation on a set A. The equivalence classes of R form a partition of the set A.

• Let A be a set and \mathcal{P} be a partition on A.

Define

$$a \stackrel{\mathcal{P}}{\equiv} b$$
 if and only if $\exists P \in \mathcal{P}, a, b \in P$.

• $\stackrel{\mathcal{P}}{\equiv}$ is an equivalence relation on *A*.

• The equivalence classes of $\stackrel{\mathcal{P}}{\equiv}$ are the elements of \mathcal{P} .

Homework

- To Turn In: p. 89 (1)
- To Discuss: p. 89 (1)