Foundations of Mathematics Final Exam Review

1. Be prepared to define the following:

- a|b, where $a, b \in \mathbb{Z}$
- even
- odd
- prime
- composite
- List
- The falling factorial, $(n)_k$
- The factorial, *n*!
- Set
- Cardinality of a set, |A|
- $A \subseteq B$
- A = B, where A and B are both sets
- Power set
- $\exists x \in A$, assertions about x
- $\forall x \in A$, assertions about x
- $A \cup B$, $A \cap B$, A B, and $A \times B$, for sets A and B
- Relation
- Reflexive, Symmetric, Antisymmetric, Transitive
- Equivalence relation
- $\bullet \ x \equiv y \ (\mathrm{mod} \ n)$
- The equivalence class, [a], corresponding to the element $a \in A$.
- Partition
- Function
- Domain, codomain, image (range)
- one-to-one (injective), onto (surjective), and bijective.
- countably infinite, uncountably infinite
- countable
- 2. Know truth tables for these Boolean operations:
 - (a) $x \wedge y$
 - (b) $x \lor y$
 - (c) ¬*x*
 - (d) $x \Rightarrow y$

- 3. Know the following proof templates
 - (a) Direct proof of an if-then statement
 - (b) Direct proof of an if-and-only-if statement
 - (c) Proving an if-then statement is false with a counterexample
 - (d) $A \subseteq B$
 - (e) A = B, where A and B are both sets
 - (f) $\exists x \in A$, assertions about x
 - (g) $\forall x \in A$, assertions about x
 - (h) Proving a statement is false by proving the negation is true
 - (i) Proof by contrapositive.
 - (j) Proof by contradiction.
 - (k) Proving uniqueness
 - (l) The principle of mathematical induction
- 4. Be prepared to prove/disprove statements.

Examples:

- (a) Disprove: If $x, y, z \in \mathbb{Z}$, and x > y, then xz > yz.
- (b) Prove: if $a, b, c \in \mathbb{Z}$, and a|b, then (ac)|(bc)
- (c) Let *A* and *B* be sets, such that $A \subseteq B$. Prove that $2^A \subseteq 2^B$.
- (d) Let *R* be the relation on \mathbb{Z} , such that xRy iff x|y. Prove or disprove each of the following:
 - i. R is reflexive
 - ii. R is symmetric
 - iii. R is transitive
 - iv. R is antisymmetric
 - v. *R* is an equivalence relation
- 5. Be prepared to answer questions or perform computations without proof.
 - (a) Let $A = \{1, \{3, 4, 9\}, 6\}$, and $B = \{1, 2, 3, \dots, 99, 100\}$. What is $|2^A \times B|$?
 - (b) A salesman is planning to visit eight cities next month from a list of fifty that contains Austin and Dallas. An itinerary for his trip is a list of the eight cities that will be visited in order, without repetitions. How many itineraries start in Austin and end in Dallas?
 - (c) Consider the relation $\equiv \pmod{5}$, and let [7] be the equivalence class of 7 for this relation. What is $[7] \cap \{20, 21, \dots, 50\}$?
 - (d) Define $f = \{(1,1), (2,3), (3,2), (4,1)\}.$
 - i. Is *f* a function?
 - ii. Is *f* one-to-one?
 - iii. If we view *f* as the function $f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3\}$, is *f* onto?
 - iv. If we view *f* as the function $f : \{1, 2, 3, 4\} \to \{1, 2, 3, 4\}$, is *f* onto?