Foundations of Mathematics Exam Two Review

- 1. Be prepared to define the following.
 - (a) List
 - (b) The falling factorial, $(n)_k$
 - (c) The factorial, *n*!
 - (d) Set
 - (e) Cardinality of a set, |A|
 - (f) $A \subseteq B$
 - (g) A = B, where A and B are both sets
 - (h) Power set
 - (i) $\exists x \in A$, assertions about x
 - (j) $\forall x \in A$, assertions about x
 - (k) $A \cup B$, $A \cap B$, A B, and $A \times B$ for sets A and B.
- 2. Applying counting techniques.
 - (a) There are n^k ways to select k items from a set of n, if order matters, and repetitions are allowed.

Example: How many 5-letter passwords can be formed using capital and lowercase letters and digits?

(b) There are $(n)_k$ ways to select k items from a set of n, if order matters, and repetitions are not allowed.

Example: How many ways are there to assign 9 baseball players to defensive positions, if 20 are available?

(c) $|A \cup B| = |A| + |B| - |A \cap B|$

Example: How many 5-letter passwords can be formed using capital and lowercase letters and digits, where the first character is "T" or the last character is "7"?

- 3. Know the following proof templates.
 - (a) $A \subseteq B$
 - (b) A = B, where A and B are both sets
 - (c) $\exists x \in A$, assertions about x
 - (d) $\forall x \in A$, assertions about x
 - (e) Proving a statement is false.

4. Be prepared to write proofs using those templates.

Examples:

- (a) Let *A*, *B*, and *C* be sets, and assume that $A \subseteq B$. Prove that $A \times C \subseteq B \times C$.
- (b) Prove that $\exists x \in \mathbb{Z}, x^2 + x + 19$ is composite.
- (c) Let *A* be the set of all odd integers. Prove that $\forall x \in A, x^2$ is odd.
- (d) Disprove: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, xy = 1.$