Foundations of Mathematics Exam Three Review

- 1. Be prepared to define the following:
 - (a) Relation
 - (b) Reflexive, Symmetric, Antisymmetric, Transitive
 - (c) Equivalence relation
 - (d) $x \equiv y \pmod{n}$
 - (e) The equivalence class, [a], corresponding to the element $a \in A$.
 - (f) Partition
 - (g) Function
 - (h) Domain, codomain, image (range)
 - (i) one-to-one (injective), onto (surjective), and bijective.
 - (j) countably infinite, uncountably infinite
 - (k) countable
- 2. Know the following proof templates
 - (a) Proof by contrapositive.
 - (b) Proof by contradiction.
 - (c) Proving uniqueness
 - (d) The principle of mathematical induction
- 3. Be prepared to write proofs.

Examples:

- (a) Prove that congruency mod n is a symmetric relation.
- (b) Prove that if $[a] \cap [b] \neq \emptyset$, then [a] = [b].
- (c) Prove that the function

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = 3x + 7$$

is a bijection.

(d) Prove that if *n* is a positive integer, then
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
.

4. For each of the following sets, state whether it is countable or uncountable (you don't have to prove it).

(a) $\{1, 2, 3\}$

- (b) ℕ
- (c) Z
- (d) Q
- (e) **R**