Math 3311 Lab 1: Introduction to R

1. Basic Arithmetic.

Use R to calculate $5 x^{3}-6 x^{2}+8 x+6$, where

$$
x=\frac{7-8(5)^{4}}{\ln (10)+\log _{10}(20)+\sqrt{7}} .
$$

2. Vectors.

(a) What is $5 x-6 y$, if $x=(1,-7,6,4)$, and $y=(4,0,25,6)$?
(b) What is the 93 rd entry of $5 u+8 v$, where $u=(7,8,9, \ldots, 199,200)$, and $v=(56,57,58, \ldots, 248,249)$?
(c) Let $x=(1,2, \ldots, 100)$. What number do you get if you square all the entries in x and add them up, i.e., what is $\sum_{i=1}^{100} i^{2}$?
(d) Compute $\sum_{i=2}^{1000} \sqrt{i^{3}-6}$.

3. Plots.

(a) Plot the function $y=x^{3}$ on the interval $-5 \leq x \leq 5$.
(b) Plot the function $y=\sec (x)$ with the window $0 \leq x \leq 2 \pi,-10 \leq y \leq 10$.

Statistics.

4. Consider the normal distribution with parameters $\mu=100$ and $\sigma=15$.
(a) What are the mean and standard deviation for this distribution? (Based on the theory of the normal distribution, not using R.)
(b) Plot the probability density on the interval $55 \leq x \leq 145$. Recall that the probability density for $N\left(\mu, \sigma^{2}\right)$ is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \text { for }-\infty<x<\infty .
$$

(c) Generate a sample of size 1000 from this distribution.
(d) Compute the corresponding sample mean and sample standard deviation. How do these compare to your results from part (4a)?
(e) Plot a relative frequency histogram for your sample, and superimpose the probability density from part (4b) on top of it.
5. Repeat problem (4) for a uniform distribution on [100, 200] (using this interval when plotting the density).
6. Repeat problem (4) for an exponential distribution with parameter $\theta=20$, using the interval $0 \leq x \leq 150$ when plotting the density.

