Probability and Statistics II Review 2

- 1. Let *X* be a random variable with probability density $f(x) = \frac{1}{39}x^2$, for $2 \le x \le 5$. Find the probability density of $Y = \ln(X)$.
- 2. Let X_1, \ldots, X_k be statistically independent random variables, and assume that X_i has a binomial distribution with parameters n_i and p, for each $i = 1, \ldots, k$. What is the probability distribution of $Y = X_1 + \cdots + X_k$?
- 3. Assume that scores on the Math SAT are approximately normally distributed with mean 500 and standard deviation 100, and consider a sample of 20 students.
 - (a) Find $P(470 \le \overline{X} \le 530)$.
 - (b) Find constants *a* and *b*, such that $P(a \le S \le b) = 0.95$.
 - (c) For the *z*-statistic defined below, find $P(-2 \le Z \le 2)$.

$$Z = \frac{\overline{X} - 500}{100/\sqrt{20}}.$$

(d) For the *t*-statistic defined below, find $P(-2 \le T \le 2)$.

$$T = \frac{\overline{X} - 500}{S/\sqrt{20}}.$$

- 4. A portfolio manager invests \$100 in each of 300 statistically independent stocks. Let X_1, \ldots, X_{300} denote the future value of these stocks in dollars after ten years, and assume that $X_i \sim U(0, 400)$, for $i = 1, \ldots, 300$.
 - (a) Find the mean and standard deviation of the future value of one stock.
 - (b) What is the probability that an individual stock increases by at least 85%, i.e., what is $P(X_i \ge 185)$?
 - (c) Find the mean and standard deviation of the future value of the entire portfolio, $Y = X_1 + \cdots + X_{300}$.
 - (d) What is the probability that the entire portfolio increases by at least 85%, i.e., what is $P(Y \ge 55, 500)$?