Probability and Statistics II Review 2

1. Let X be a random variable with probability density $f(x)=\frac{1}{39} x^{2}$, for $2 \leq x \leq 5$. Find the probability density of $Y=\ln (X)$.
2. Let X_{1}, \ldots, X_{k} be statistically independent random variables, and assume that X_{i} has a binomial distribution with parameters n_{i} and p, for each $i=1, \ldots, k$. What is the probability distribution of $Y=X_{1}+\cdots+X_{k}$?
3. Assume that scores on the Math SAT are approximately normally distributed with mean 500 and standard deviation 100, and consider a sample of 20 students.
(a) Find $P(470 \leq \bar{X} \leq 530)$.
(b) Find constants a and b, such that $P(a \leq S \leq b)=0.95$.
(c) For the z-statistic defined below, find $P(-2 \leq Z \leq 2)$.

$$
Z=\frac{\bar{X}-500}{100 / \sqrt{20}} .
$$

(d) For the t-statistic defined below, find $P(-2 \leq T \leq 2)$.

$$
T=\frac{\bar{X}-500}{S / \sqrt{20}} .
$$

4. A portfolio manager invests $\$ 100$ in each of 300 statistically independent stocks. Let X_{1}, \ldots, X_{300} denote the future value of these stocks in dollars after ten years, and assume that $X_{i} \sim$ $U(0,400)$, for $i=1, \ldots, 300$.
(a) Find the mean and standard deviation of the future value of one stock.
(b) What is the probability that an individual stock increases by at least 85%, i.e., what is $P\left(X_{i} \geq 185\right)$?
(c) Find the mean and standard deviation of the future value of the entire portfolio, $Y=$ $X_{1}+\cdots+X_{300}$.
(d) What is the probability that the entire portfolio increases by at least 85%, i.e., what is $P(Y \geq 55,500)$?
