

Questions for Todays Class

- 1. What are Constellations?
- 2. How do we name stars?
- 3. How do we measure brightness of stars?
- 4. What are the distance units used in Astronomy?
- 5. What do we Mean by the Scale of the Universe?

What are Constellations?

Topics

- 1. Old Definitions
- 2. Modern Definitions

Old Definitions

Certain group of Stars appeared as great heroes and mythological figures

Constellations

- There are 88 Constellations
- 12 of these hold special significance because the Sun passes through them in the course of a year. They are called Zodiacal constellations and are also used by Astrologers.

How do we name stars?

Topics

- 1. Greek Letters
- 2. Naming convention
- 3. Examples

Aα	alpha	Νv	nu
Bβ	beta	Ξξ	ksi
Гγ	gamma	00	omicro
Δδ	delta	Ππ	pi
Eε	epsilon	Ρρ	rho
Zζ	zeta	Σ σς	sigma
Hη	eta	Ττ	tau
Θθ	theta	Yυ	upsilon
Iι	iota	Φφ	phi
Kκ	kappa	Χχ	chi
Λλ	lambda	Ψψ	psi
Μμ	mu habet chart @ by de Tra	Ωω	omega

How do we measure brightness of stars?

Topics

- 1. Night Sky view
- 2. History
- 3. Modern Definition
- 4. Comparing Brightness
- 5. Quantifying Brightness Magnitude Equation
- 6. Examples
- 7. The Magnitude Scale used Today
- 8. Constellation Stars and Magnitudes

Comparing Brightness This table is one way to remember the relationship between brightness and magnitude.					
	corresponding rtux katio				
0.00	1.00				
1.00	2.51				
	6.31				
2.00	0.51				
2.00 3.00	15.8				

Quantifying Brightness – Magnitude Equation This is how Astronomers work it out. The proper way to do it. Apparent Magnitude (*m*): Brightness of the star irrespective of its distance from us m = apparent magnitude b = brightness 1 = Star A 2 = Star B $m_1 - m_2 = 2.5 \log \left(\frac{b_2}{b_1}\right)$

Examples

• Two stars differ by 3 magnitude. What is the brightness ratio? h_2

$$\frac{b_2}{b_1} = (100^{0.2})^{m_1 - m_2} = 100^{0.2^{(3)}} = 16$$

Sirius is 24.2 time more bright than Polaris. What is the magnitude difference?

$$m_1 - m_2 = 2.5 \log\left(\frac{b_2}{b_1}\right) = 2.5 \log(24.2) = 2.5 \times 1.38 = 3.5$$

Exercise: Practice with these two examples to learn how to do it in your calculator

What are the distance units used in Astronomy?

Topics

- 1. Astronomical Unit (au or AU)
- 2. Light Year (ly or LY)

The Light Year

Astronomical Unit is inadequate to use for large distances So

We need a new unit of distance

- 1 light year (ly) = Distance traveled by light in 1 year
- = 63,000 AU = 10¹³ km
- = 10,000,000,000,000 km
- (= 1 + 13 zeros)
- = 10 trillion km Speed of light = $c = 3 \times 10^8$ m/s

Nearest star to the Sun:

Proxima Centauri, at a distance of 4.2 light years Light Year is also a look back time: The farther we look the older the Universe we see

What do we Mean by Scale of the Universe?

Topics

- 1. Powers of 10^x
- 2. Universe on the Large Scale
- 3. Universe on the Small Scale

- Distances can be approximated in powers of 10 to show the large scale of the Universe. Positive exponent of 10 show large numbers.
- Powers of 10 can also be used to show the microscopic scale in the Universe. Negative exponent of 10 show very small numbers.

Acknowledgment

- The slides in this lecture is for Tarleton: PHYS1411/PHYS1403 class use only
- Images and text material have been borrowed from various sources with appropriate citations in the slides, including PowerPoint slides from adopted text book.