PHYS 1403 Stars and Galaxies

Questions for Todays Class

1. What are Constellations?
2. How do we name stars?
3. How do we measure brightness of stars?
4. What are the distance units used in Astronomy?
5. What do we Mean by the Scale of the Universe?

What are Constellations?

Topics

1. Old Definitions
2. Modern Definitions

Old Definitions

Certain group of Stars appeared as great heroes and mythological figures

Constellations

- There are 88 Constellations
- 12 of these hold special significance because the Sun passes through them in the course of a year. They are called Zodiacal constellations and are also used by Astrologers.

Constellations of the Zodiac

Position of the Sun in a zodiacal constellations as the Earth revolves in a year

How do we name stars?

Topics

1. Greek Letters
2. Naming convention
3. Examples

Star Names in a Constellation

Stars are named by a Greek letter (α, β, γ) according to their relative brightness within a given constellation + the possessive form of the name of the constellation:

Night Sky View

It is clear that not all stars are the same brightness. How do you measure the brightness of a Star?

Modern Definition

- In1856 Norman Pogson proposed that the eye's perception of light is logarithmic so five (6-1=5) magnitude difference corresponds to $\sqrt[5]{100} \approx$ 2.512 , consequently $1^{\text {st }}$ magnitude star is 2.5 times brighter than $2^{\text {nd }}$ magnitude star and the $3^{\text {rd }}$ magnitude star is $2.5 \times 2.5=6.25$ times brighter than $1^{\text {st }}$ magnitude star.
Larger the magnitude number, fainter the brightness of star

Larger the magnitude, smaller the size on the chart
Gcseastronomy.co.uk

Comparing Brightness

This table is one way to remember the relationship between brightness and magnitude.

Magnitude Difference	Corresponding Flux Ratio
0.00	1.00
1.00	2.51
2.00	6.31
3.00	15.8
4.00	39.8
5.00	100

This table is limited if the magnitude difference has decimal numbers

Quantifying Brightness -Magnitude Equation

This is how Astronomers work it out. The proper way to do it.
Apparent Magnitude (m): Brightness of the star irrespective of its distance from us
$\mathrm{m}=$ apparent magnitude
$\mathrm{b}=$ brightness
1 = Star A
$1=$ Star A
$2=S \operatorname{tar} B$

$$
m_{1}-m_{2}=2.5 \log \left(\frac{b_{2}}{b_{1}}\right)
$$

Examples

- Two stars differ by 3 magnitude. What is the brightness ratio?

$$
\frac{b_{2}}{b_{1}}=\left(100^{0.2}\right)^{m_{1}-m_{2}}=100^{0.2^{(3)}}=16
$$

- Sirius is 24.2 time more bright than Polaris. What is the magnitude difference?

$$
m_{1}-m_{2}=2.5 \log \left(\frac{b_{2}}{b_{1}}\right)=2.5 \log (24.2)=2.5 \times 1.38=3.5
$$

Exercise: Practice with these two examples to learn how to do it in your calculator

Example

What do we Mean by Scale of the Universe?

Topics

1. Powers of 10^{x}
2. Universe on the Large Scale
3. Universe on the Small Scale

What are the distance units used in Astronomy?

Topics

1. Astronomical Unit (au or AU)
2. Light Year (ly or LY)

The Light Year
Astronomical Unit is inadequate to use for large distances So
We need a new unit of distance
1 light year (ly) = Distance traveled by light in 1 year
$=63,000 \mathrm{AU}=10^{13} \mathrm{~km}$
$=10,000,000,000,000 \mathrm{~km}$
($=1+13$ zeros)
$=10$ trillion $\mathrm{km} \quad$ Speed of light $=\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Nearest star to the Sun:
Proxima Centauri, at a distance of 4.2 light years
Light Year is also a look back time: The farther we look the older the Universe we see

Powers of 10

- Distances can be approximated in powers of 10 to show the large scale of the Universe. Positive exponent of 10 show large numbers.
- Powers of 10 can also be used to show the microscopic scale in the Universe. Negative exponent of 10 show very small numbers.

The Universe of the Very Small Scale

Acknowledgment

- The slides in this lecture is for Tarleton: PHYS1411/PHYS1403 class use only
- Images and text material have been borrowed from various sources with appropriate citations in the slides, including PowerPoint slides from adopted text book.

